• Title/Summary/Keyword: Sympathetic Neurotransmission

Search Result 8, Processing Time 0.026 seconds

Clinical Application of I-123 MIBG Cardiac Imaging (I-123 MIBG Cardiac SPECT의 임상적 적응증)

  • Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

Regulatory Role of Adrenal Medulla and Renin-Angiotensin System in Sympathetic Neurotransmission in Spontaneously Hypertensive and Normotensive Rats (선천성 고혈압 흰쥐와 정상혈압 흰쥐의 교감신경성 신경전달에 미치는 부신수질 및 Renin-Angiotensin계의 역할)

  • Kim, In-Kyeom;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • To assess the role of adrenal medulla and renin-angiotensin system in the regulation of sympathetic neurotransmission, the pressor response to PNS was evaluated in pithed SHR and normotensive WKY or SDR with or without adrenal demedullation and/or enalapril pretreatment. Three weeks after adrenal demedullation, MAP and the heart rate of demedullated rats were similar to their corresponding sham-operated groups. The pressor response to PNS was frequency-dependent, and blocked by prazosin. In contrast to the normotensive rats, in SHR, the pressor response to PNS was attenuated in demedullated rats as compared with sham-operated rats. However, the attenuation of PNS-induced pressor responses in demedullated SHR was not observed in enalapril-treated SHR. The adrenal demedullation in SHR did not affect the plasma and aortic catecholamine contents in spite of the decreased catecholamine contents of adrenal gland, nor ACE activity in aortic strips. But, in WKY rats, the aortic catecholamines, especially epinephrine, contents as well as ACE activity were increased by adrenal demedullation. These results suggest that the facilitatory role of adrenal medulla in sympathetic neurotransmission depends upon the activation of renin-angiotensin system, and that the compensatory regulation of renin-angiotensin system takes place in normotensive rats but not in SHR.

  • PDF

INFLUENCE OF BRADYKININ ON CATECHOLAMINE SECRETION FROM THE ISOLATED PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Kang, Moo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.128-128
    • /
    • 2003
  • Bradykinin modulates the sympathetic system in various ways. It can stimulate sympathetic neurotransmission directly through presynaptic receptors (Llona et al., 1991) and indirectly via its hypotensive or nociceptive effects which activate central and ganglionic mechanisms (Kuo and Keeton, 1991; Dray et al., 1988). However, it has been found that bradykinin can also liberate prostaglandins in peripheral tissues, thereby attenuating the release of catecholamines(Starke et al., 1977). (omitted)

  • PDF

Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons

  • Xing, Yi;Chen, Xiuying;Liu, Zhen;Li, Hao;Liu, Huaxiang;Li, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.315-319
    • /
    • 2011
  • Galanin (Gal) is a 29-amino-acid neuropeptide which is expressed in superior cervical ganglion (SCG) neurons and plays a trophic role in the adult animal and acts as an inhibitory modulator of cholinergic and noradrenergic neurotransmission. Whether activation or inhibition of alpha-adrenoreceptors infl uences Gal mRNA expression in SCG neurons remains unknown. Here, we have evaluated the possible regulation of Gal mRNA expression with acute (4 h) and chronic (4 days) stimulation of alpha 1- and alpha 2-adrenoreceptor agonists or antagonists in primary cultured SCG neurons. The results showed that the amount of Gal mRNA expression in cultured SCG neurons increased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor antagonist yohimbine compared with control SCG neurons at the same time point, whereas the amount of Gal mRNA expression decreased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor agonist clonidine as compared with that in control group. All these effects were not dose-dependent on the administration of alpha 2-adrenoreceptor agonist clonidine or alpha 2-adrenoreceptor antagonist yohimbine. Alpha 1-adrenoreceptor agonist phenylephrine or antagonist prazosin chronic stimulation did not have effects on Gal mRNA expression. Acute exposure of these agents did not have effects on Gal mRNA expression. The present study showed that Gal may be regulated by activation or inhibition of alpha 2-adrenoreceptors, but not alpha 1-adrenoreceptors in sympathetic neurons.

Effect of Portulaca oleracea Extract in Removing Nicotine Component of Tobacco (쇠비름 추출물이 담배의 Nicotine 성분 제거에 미치는 영향)

  • 배지현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.607-612
    • /
    • 1999
  • Cigarette smoking is the potential risk factor for lung cancer and chronic pulmonary disease, as well as inflammatory bowel disease and reproductive malfunction. Nicotine and tar have been im plicated as a major factor in the pathogenesis of the diseases. Nicotine increases heart rate and blood pressure due to stimulation sympathetic neurotransmission and tar also accounts for the severe damage of peridontal diseases and osteoporosis in postmenopausal women. Portulaca oleracea, which contains significant amount of K+, noradrenaline and dopamine as well as various nutrients, has been used for many medicinal purposes and one of which is the detoxification of insect or snake toxins. The purpose of this study was to investigate the action of Portulaca oleracea extracts on the reduction of harmful materials of tabacco. The reduction percentages were measured in the presence and absence of each solvent extract of Portulaca oleracea using reversed C18 column of HPLC. Nicotine reduction effects were obtained from aqueous, methanol and chloroform extracts of Portulaca oleracea as 89%, 55% and 51%, respectively. The results suggest that the polar extracts of Portulaca oleracea affects the reduction of nicotine which is responsible for many diseases.

  • PDF

Clostridium difficile Toxin A Induces Reactive Oxygen Species Production and p38 MAPK Activation to Exert Cellular Toxicity in Neuronal Cells

  • Zhang, Peng;Hong, Ji;Yoon, I Na;Kang, Jin Ku;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1163-1170
    • /
    • 2017
  • Clostridium difficile releases two exotoxins, toxin A and toxin B, which disrupt the epithelial cell barrier in the gut to increase mucosal permeability and trigger inflammation with severe diarrhea. Many studies have suggested that enteric nerves are also directly involved in the progression of this toxin-mediated inflammation and diarrhea. C. difficile toxin A is known to enhance neurotransmitter secretion, increase gut motility, and suppress sympathetic neurotransmission in the guinea pig colitis model. Although previous studies have examined the pathophysiological role of enteric nerves in gut inflammation, the direct effect of toxins on neuronal cells and the molecular mechanisms underlying toxin-induced neuronal stress remained to be unveiled. Here, we examined the toxicity of C. difficile toxin A against neuronal cells (SH-SY5Y). We found that toxin A treatment time- and dose-dependently decreased cell viability and triggered apoptosis accompanied by caspase-3 activation in this cell line. These effects were found to depend on the up-regulation of reactive oxygen species (ROS) and the subsequent activation of p38 MAPK and induction of $p21^{Cip1/Waf1}$. Moreover, the N-acetyl-$\text\tiny L$-cysteine (NAC)-induced down-regulation of ROS could recover the viability loss and apoptosis of toxin A-treated neuronal cells. These results collectively suggest that C. difficile toxin A is toxic for neuronal cells, and that this is associated with rapid ROS generation and subsequent p38 MAPK activation and $p21^{Cip1/Waf1}$ up-regulation. Moreover, our data suggest that NAC could inhibit the toxicity of C. difficile toxin A toward enteric neurons.

NITRIC OXIDE AND DENTAL PULP (NITRIC OXIDE와 치수)

  • Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

Long-Term Treatment with Enalapril Depresses Endothelin and Neuropeptide Y-induced Vasoactive Action in Spontaneously Hypertensive Rats (선천성 고혈압흰쥐에서 Endothelin과 Neuropeptide Y에 의한 심혈관계 반응에 Enalapril 장기처치가 미치는 영향)

  • Kim, Kwon-Bae;Sohn, Uy-Dong;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 1992
  • This study was designed to evaluate the responses of cardiovascular system to endothelin (ET) and neuropeptide Y (NPY) in 12 week-old SHR treated with or without enalapril (ENP) for 6 weeks. The diastolic blood pressure and heart rate were lower in ENP-treated SHR than in control. The pressor response to intravenous, but not intracerebroventricular, ET or NPY was attenuated by ENP treatment. The chronotropic action induced by electrical stimulation was attenuated by ENP or ET. The negative chronotropic action of ET was blocked by yohimbine. The increase in aortic tension induced by electrical field stimulation (EFS) was depressed in ENP-treated group as compared with non-treated group, and enhanced by ET, but not NPY, in the non-treated group. The ET-induced increase in tension was enhanced by removal of endothelium in the control group but not in ENP-treated group. The plasma concentration of norepinephrine and ET-induced increase in concentration of norepinephrine and epinephrine in plasma were decreased in ENP-treated group. These results suggest that preventive effect of enalapril on the development of hypertension may result from depressing vasoactive action of endothelin and neuropeptide Y, and sympathetic neurotransmission at peripheral nervous system.

  • PDF