• Title/Summary/Keyword: Symmetric Transfer Error

Search Result 8, Processing Time 0.019 seconds

Feature Point Filtering Method Based on CS-RANSAC for Efficient Planar Homography Estimating (효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법)

  • Kim, Dae-Woo;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.307-312
    • /
    • 2016
  • Markerless tracking for augmented reality using Homography can augment virtual objects correctly and naturally on live view of real-world environment by using correct pose and direction of camera. The RANSAC algorithm is widely used for estimating Homography. CS-RANSAC algorithm is one of the novel algorithm which cooperates a constraint satisfaction problem(CSP) into RANSAC algorithm for increasing accuracy and decreasing processing time. However, CS-RANSAC algorithm can be degraded performance of calculating Homography that is caused by selecting feature points which estimate low accuracy Homography in the sampling step. In this paper, we propose feature point filtering method based on CS-RANSAC for efficient planar Homography estimating the proposed algorithm evaluate which feature points estimate high accuracy Homography for removing unnecessary feature point from the next sampling step using Symmetric Transfer Error to increase accuracy and decrease processing time. To evaluate our proposed method we have compared our algorithm with the bagic CS-RANSAC algorithm, and basic RANSAC algorithm in terms of processing time, error rate(Symmetric Transfer Error), and inlier rate. The experiment shows that the proposed method produces 5% decrease in processing time, 14% decrease in Symmetric Transfer Error, and higher accurate homography by comparing the basic CS-RANSAC algorithm.

Design of Variable Data Transfer Rate Asymmetric TDD System Using Turbo Decoder with Double Buffer Controller (이중 버퍼 제어기 구조의 터보 복호기를 사용한 전송률 가변 비대칭 TDD 시스템 설계)

  • Park, Byeung-Kwan;Kim, Mi-Rae;Kim, Hyo-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • This paper proposes a variable data transfer asymmetric TDD(Time Division Duplex) system for small UAV(Unmanned Aerial Vehicle) data link system. In the proposed method, a turbo decoder with a double buffer controller is proposed to apply turbo decoder with long decoding time to asymmetric TDD system. The proposed method achieves variable data transfer rate and maximum data transfer rate. The advantage of the proposed method is demonstrated by its data transfer rate. The measured data transfer rate is more than 1.8 times than that of symmetric TDD system. In addition, PER(Packet Error Rate) performance is the same and data transfer rate is variable.

Design of ultraprecision hi-directional actuator for nm using a permanent magnet and electromagnet (영구 자석과 전자석의 상호작용을 이용한 초정밀 양방향 구동기 설계)

  • Kim Ki-Hyun;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.147-154
    • /
    • 2005
  • A precision hi-directional actuator for a high precision leveling system with $Z{\Theta}_x{\Theta}_y$ motions is proposed and designed in this paper. The actuator is composed of a force generation structure, a guide mechanism, and a symmetric structure. At first, its driving force is generated by a change of flux in air gaps by permanent and changeable flux. The permanent flux is generated by a permanent magnet. The changeable flux is created by variable current flowing through coil. The combination of permanent and changeable flux makes various flux densities in air gaps between moving part and fixed yokes. And then, the difference between flux densities in lower and upper gaps creates forces fur the $bi-direction({\pm}z)$ motion. The guide mechanism of this actuator is composed of two circular plates and one shaft. Reducing motions generated by forces except z-motion, these circular plates endow the actuator with high stiffness for fast settling time. And the function of the shaft is to transfer motion to an object. At last, total body has a symmetric structure to be stable on thermal error. The actuator is designed by MAXWELL 2D and ProMECHANICA. The designed actuator is evaluated by 8nm laser doppler vibrometer, dynamic signal analyzer, and simple PID controller.

Tolerance analysis of Multi-Configurative Microscopic System for Inspecting the Wire-Bonding Status of Semiconductor Chips (반도체 와이어 본딩 검사용 다중배치 현미경 광학계에 대한 공차분석)

  • Ryu, Jae-Myung;Kim, Jae-Bum;Kang, Geon-Mo;Jung, Jin-Ho;Baek, Seung-Sun;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • We have analyzed various tolerances of the multi-configurative microscopic system for inspecting the wire-bonding of a reed frame by using the Gaussian bracket method and the equivalent lens method. The tolerances for the curvature and the thickness, which are axial symmetric tolerances, are given by varying the back focal length within a fecal depth under diffraction-limited conditions. Moreover, by using the trial and error method, the axial non-symmetric tolerances for decenter and tilt are established by assigning the 5% variation of MTF(modulation transfer function) at the spatial frequency of 50 lp/mm and at the field angle of 0.7 field. As the tolerances with the most probable distribution are distributed within the range of the decay rate of less than 5% independent of the probability distribution of tolerances, we can achieve completely the desired design performances of the multi-configurative microscopic system by using the various ranges of these tolerances.

An Analysis of Axisymmetric Two Dimensional Heat Diffusion Equation to Measure the Thermal Diffusivity of Layered Materials (積層材料의 熱擴散係數測定을 위한 軸對稱 二次元 熱擴散方程式의 解析)

  • 김진원;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.349-356
    • /
    • 1986
  • For the extension of application in flash method measuring the thermophysical properties of materials, the heat diffusion equation with the heat transfer loss from front, rear, and circumferential surfaces of two layer cylinderical sample is mathematically analyzed by means of Green's function for axially symmetric pulse heating on the front of samples. The solutions are applied to determine the unknown thermal diffusivity of the two materials and analyzed the measurement error due to heat loss and finite pulse time effects.

Feature Point Filltering Method based on CS-RANSAC for Efficient Planar Homography Estimating (효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법)

  • Kim, Dae-Woo;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1451-1454
    • /
    • 2015
  • RANSAC 알고리즘은 컴퓨터 비전 분야에서 호모그래피 행렬을 추정하는데 많이 사용되고 있다. CS-RANSAC 알고리즘은 RANSAC 알고리즘에 제약조건을 설정하여 정확도를 높인 알고리즘이지만 샘플링 단계에서 정확한 호모그래피를 추정하는데 불필요한 특징점을 선택하여 알고리즘의 효율성을 저하시키는 경우가 있다. 따라서 본 논문에서는 Symmetric Transfer Error로 특징점이 참정보인지 평가하고 불필요한 특징점을 필터링하여 CS-RANSAC 알고리즘의 속도와 정확도를 증가시키는 방법을 제안한다. 실험은 제안하는 알고리즘의 수행시간과 오차율을 비교하였고, 실험 결과 본 논문에서 제안한 방법이 기존 CS-RANSAC 알고리즘보다 수행시간이 평균적으로 약 5% 단축되었고 정확도는 약 14% 향상 되었다.

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.