• Title/Summary/Keyword: Symmetric Mode

Search Result 272, Processing Time 0.04 seconds

Fracture Analysis of Hole Flanging Process for High Strength Steel Sheets (고강도 열연판재의 홀 플랜정시 파단특성연구)

  • 김정운;김봉준;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • Hole flanging experiments are performed on flat circular plates with a hole in the center and the flangeability and fracture behaviors of TRIP steels and ferrite-Bainite duplex steels were examined. In the hole flanging, deformation by lip and petalling occurs when plates are struck by punches of various shapes and high circumferential strains induced in the target material cause radial cracking and the subsequent rotation of the affected plate material in a number of symmetric petals. In all cases, failure of the plate was due to lip fracture that results from multiple localized neckings that take place around the hole periphery where straining is most severe and a somewhat regular pattern was observed in a fracture shape. The neck characteristics in flange formation and the transition from the lip to petal mode at which fracture occurs were compared with two materials.

  • PDF

Performance Analysis of EEGR Valve (EEGR 밸브의 성능해석)

  • 김호상;김덕진;최진경;윤대호;박상권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.389-392
    • /
    • 2000
  • This paper presents a performance Analysis of electrically exhaust gas recirculation valve using commercial electromagnetic simulation software, Flux2D. Under the assumption of 2D axi-symmetric magnetic field, the characteristics of EEGR valve by revising the design parameter, has ken investigated by estimating the variation of thrust force with respect to the pintle position. The mode shapes and the frequency response functions were computed by using three dimensional finite element modeling of the whole EEGR valve and their accuracies were verified with experimental FFT analysis technique.

  • PDF

Characteristics of Proton-Diffused $LiNbO_3$ Optical Waveguides with Self-Aligned $SiO_2$-Cladding (자기정렬된 $SiO_2$ 클래딩 구조를 갖는 양자확산 $LiNbO_3$ 광도파로의 특성)

  • Son, Yung-Sung;Lee, Hyung-Jae;Shin, Sang-Yung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.655-658
    • /
    • 1989
  • The characteristics of proton-diffused $LiNbO_3$ optical waveguides with self-aligned $SiO_2$-cladding are reported. When the proton diffusion occurs, the $SiO_2$-cladding limits the lateral diffusion of protons by out-diffusion of protons in unclad region. Proton indiffusion in depth direction is promoted by inhibition of out-diffusion in clad region. Consequently, the mode profile in depth direction can be nealy symmetric. The extent of the proton exchange was observed by measuring the infrared absorption peak at about $3500cm^{-1}$. It is confirmed that proton diffusion with $SiO_2$-cladding has structural excellency.

  • PDF

Study on the Behavior of a Center Crack under Thermal Impact by the Dislocation Theory (전위이론에 의한 열충격하의 균열거동에 관한 연구)

  • Cho, Chong-Du;Ahn, Soo-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3408-3414
    • /
    • 1996
  • This paper investigated plane strain stress intensity factors caused by thermal impact on a center-crack strip. The crack was aligned perpendicularly to the strip boundary. The problem was analysed by determining the dislocation density function in the singular integral equations formulated by the dislocation theory. Under the abrupt temperature change along the edge, the center crack behaved as a mode I crack due to the symmetric geometry. The value of maximum stress intensity factor monotonically increased until the ratio of dimensionless crack length approached to about 0.3, followed by gradual decrease. As a result, a critical corresponding crack length was determined.

Perturbation analysis of localized deformation by dynamic strain aging (Dynamic strain aging 에 의한 국소변형의 perturbation analysis)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

Damage localization in plate-like structure using built-in PZT sensor network

  • Liu, Xinglong;Zhou, Chengxu;Jiang, Zhongwei
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2012
  • In this study, a Lamb-wave based damage detection approach is proposed for damage localization in plate. A sensor network consisting of three PZT wafer type actuators/sensors is used to generate and detect Lamb waves. To minimize the complication resulted from the multimode and dispersive characteristics of Lamb waves, the fundamental symmetric Lamb mode, $S_0$ is selectively generated through designing the excitation frequency of the narrowband input signal. A damage localization algorithm based upon the configuration of the PZT sensor network is developed. Time-frequency analysis method is applied to purify the raw signal and extract damage features. Experimental result obtained from aluminum plate verified the proposed damage localization approach.

Free vibration analysis of concrete arch dams by quadratic ideal-coupled method

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Kazemiyan, Mohammad Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • This paper is devoted to two new techniques for free vibration analysis of concrete arch dam-reservoir systems. The proposed schemes are quadratic ideal-coupled eigen-problems, which can solve the originally non-symmetric eigen-problem of the system. To find the natural frequencies and mode shapes, a new special-purpose eigen-value solution routine is developed. Moreover, the accuracy of the proposed approach is thoroughly assessed, and it is confirmed that the new scheme is very accurate under all practical conditions. It is also concluded that both decoupled and ideal-coupled strategy proposed in the previous works can be considered as special cases of the current more general procedure.

Design and Vibration Reduction Method of Sub-Resonance in Optical Pick-Up Actuator Using the Fine Pattern Coil (FP 코일형 광픽업 액츄에이터의 설계 및 부공진의 진동저감 대책)

  • 정호섭;오관영;유익형
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.643-653
    • /
    • 1998
  • The sub-resonance modes can be easily excited by the assembling tolerance in the asymmetric type optical pick-up actuators, compared with the symmetric type. In this paper, we propose the novel method for reducing the vibration due to the sub-resonance modes whose amplitude can be decreased by adding the damper and increasing the flexibility of holder PCB. Using the finite element method, the change of mode shapes is investigated as the shape of holder PCB is modified. Experimental results support that the propopsed method reduces remarkably the vibration of sub-resonance modes of the optical pick-up actuator.

  • PDF

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

An Equivalent Bell and Beat Period Control in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 등가 종과 맥놀이 주기 조절)

  • Lee, Joong-hyeok;Kim, Seock-hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.472-475
    • /
    • 2013
  • This study proposes an equivalent bell model for the Sacred Bell of the Great King Seongdeok An equivalent bell model bas the modal property of the real bell and it consists of an axi-symmetric bell body and a point mass, The bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model. the beat period can be controlled by decreasing the thickness of local area. This study aims at showing a beat period control method for a large bell having the similar size to the Sacred Bell of the Great King Seongdeok.

  • PDF