• 제목/요약/키워드: Symbiotic Star

Search Result 33, Processing Time 0.236 seconds

An Analysis of the Symbiotic Star Z And Line Profile (공생별 Z And의 선윤곽 분석)

  • Lee, Seong-Jae;Hyung, Siek;Lee, Kangwhan
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.608-617
    • /
    • 2012
  • The symbiotic nova Z Andromedae (And) was investigated, using the high dispersion spectra of spectral resolution, ${\Delta}{\lambda}{\sim}-0.1{\AA}$. The spectral observations were done with (1) the Hamilton Echelle Spectrograph (HES) and the high resolution spectra (exposures=1800s and 3600s) were obtained at Lick Observatory in 2001 August $30^{th}$ (phase ${\Phi}$=0.77), and 2002 August $12^{th}$ (phase ${\Phi}$=0.22), (2) with the Bohyunsan Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory and the high resolution spectra (exposure=1200s) were secured in 2009 October $21^{st}$ (phase ${\Phi}$=0.70). From both the HES and BOES spectral data in the $3600{\AA}-9500{\AA}$ wavelengths, we extracted the emission lines of HI, HeI, and HeII, which have been decomposed into double or triple Gaussian components for 3 consecutive phases. The emission zones responsible for these components appear to be closely related with the orbital motion of a white dwarf or a giant star. The presence of the Raman scattering $H{\alpha}$ broad wing feature and the kinematic characteristics of the line profile observed in each phase imply that the Z And emission lines are mostly from two Lagrangian points, $L_1$ and $L_2$, and the accretion disk around the white dwarf star. The Z And was most active in 2009 and 2001 during the outburst phase, while it remained quiescent in 2002 in spite of the complex line profiles.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

CHEMICAL ABUNDANCES OF THE SYMBIOTIC NOVA AG PEGASI

  • Kim, Hyouk;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.23-37
    • /
    • 2008
  • The high-resolution optical region spectroscopic data of the symbiotic nova AG Peg secured with the Hamilton Echelle Spectrograph at the Lick Observatory, have been analyzed along with the International Ultraviolet Explorer UV archive data. We measure about 700 line intensities in the wavelengths of 3859 to $9230{\AA}$ and identify about 300 lines. We construct pure photoionization models that represent the observed lines and the physical condition for this symbiotic nova. The spectral energy distribution of the ionizing radiation is adopted from stellar model atmospheres. Based on photoionization models, we derive the elemental abundances; C & N appear to be similar to be smaller than the Galactic planetary nebular value while O is enhanced. Our result is compared with the Contini (1997, 2003) who analyzed the UV region spectral data with the shock + ionization model. The Fe abundance appears to be enhanced than that of normal planetary nebulae, which suggests that AG Peg may have formed in the Galactic disk. The models indicate that the temperature of the central star which excite the shell gas may have fluctuated to an unexpected extent during the years 1998 - 2002.

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF

STRENGTH OF THE RAMAN SCATTERED HE II EMISSION LINES IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • In Lee, Kang & Byun (2001) the discovery of Raman scattered 6545 A feature was reported in symbiotic stars and the planetary nebula M2-9. The broad emission feature around 6545 A is formed as a result of Raman scattering of He II n = 6 $\to$ n = 2 photons by atomic hydrogen. In this paper, we introduce a method to compute the equivalent width of He II $\lambda$ 1025 line and present an optical spectrum of the symbiotic star RR Telescopii as an example for a detailed illustration. In this spectrum, we pay attention to the broad H$\alpha$ wings and the Raman scattered He II 6545 feature. The broad Ha wings are also proposed to be formed through Raman scattering of continuum around Ly$\beta$ by Lee (2000), and therefore we propose that the equivalent width of the He II $\lambda$ 1025 emission line is obtained by a simple comparison of the strengths of the 6545 feature and the broad H$\alpha$ wings. We prepare a template H$\alpha$ wing profile from continuum radiation around Ly$\beta$ with the neutral scattering region that is supposed to be responsible for the formation of Raman scattered He II 6545 feature. Isolation of the 6545 feature that is blended with [N II] $\lambda$ 6548 is made by using the fact that [N II] $\lambda$ 6584 is always 3 times stronger than [N II] $\lambda$ 6548. We also fit the 6545 feature by a Gaussian which has a width 6.4 times that of the He II $\lambda$ 6527 line. A direct comparison of these two features for RR Tel yields the equivalent width $EW_{Hel025} = 2.3{\AA}$ of He II $\lambda$ 1025 line. Even though this far UV emission line is not directly observable due to heavy interstellar extinction, nearby He II lines such as He II $\lambda$ 1085 line may be observed using far UV space instruments, which will verify this calculation and hence the origins of various features occurring in spectra around H$\alpha$.

HIGH RESOLUTION SPECTRUM OF SYMBIOTIC STAR AG PEGASI (공생형 별 AG PEGASI의 고해상 스펙트럼)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2006
  • We report a high resolution spectrum of AG Pegasi observed at Bohyunsan Optical Astronomy Observatory (BOAO) on October 2, 2004. Some of permitted emission lines, for example H I, He I, He II, Fe II and Ti II were observed in the spectrum of AG Pegasi in 2004. Lines presented in the longer wavelength region than $6500{\AA}$ are identified. And radial velocities for each element are measured. Then we carefully discuss the geometrical feature of AG Pegasi in October 2004.

NEBULAR SPECTRUM OF PU VUL IN 2004

  • Yoo, Kye-Hwa
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2007
  • A high resolution spectrum of PU Vul obtained at Bohyunsan Astronomy Observatory on April 9, 2004 is presented. At this phase, PU Vul was an emission-line star and its continuum was very weak. Emission lines of He II, H I, [Ne IV], [N II], [O III], [Ar V ] and [Fe VII] dominated the spectrum of PU Vul. Many of them exhibited hat-top profiles with strong and multi-peaked emissions on flat-tops of their profiles. Radial velocities for these lines were measured. Origins of the spectral lines are discussed in terms of the wind and the photoionization models.

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.273-279
    • /
    • 2004
  • Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

Raman O VI Profile Analysis of Accretion and Bipoloar Outflow in Sanduleak's Star

  • Heo, Jeong-Eun;Angeloni, Rodolfo;Di Mille, Francesco;Palma, Tali;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.58.4-59
    • /
    • 2017
  • Sanduleak's star is a suspected symbiotic binary located in the Large Magellanic Cloud. It is known that it has a giant jet with physical size ~ 14pc. Its spectrum shows two strong emission bands at $6825{\AA}$ and $7082{\AA}$, which are originated from Raman-scattering of O VI by neutral hydrogen atoms. We present the high-resolution spectrum of Sanudleak's star obtained with MIKE at the Magellan-Caly telescope to investigate the O VI emission region based on the profiles of the two Raman features. In this spectrum, it is noted that the Raman $6825{\AA}$ feature exhibits a single broad peak profile, which is in high contrast with a clear triple peak profile of the Raman $7082{\AA}$ feature. In our analysis we suggest that the O VI emission region consist of three main emission parts: an accretion disk, a bipolar outflow and an optically thick, compact component surrounding the white dwarf. By performing Monte Carlo simulation we constrain the representative column density of the H I scattering region N_HI ~1${\times}$10^23 cm^-2, which is in accordance with the observed flux ratio in the two Raman features F(6825)/F(7082) ~ 4.5.

  • PDF