• Title/Summary/Keyword: Switching function model

Search Result 131, Processing Time 0.021 seconds

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

Design of a Mode Switching Controller for Gun Servo System (포 구동시스템에 대한 모드 스위칭 제어기 설계)

  • Yim Jong-Bin;Baek Seoung-Mun;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.425-430
    • /
    • 2006
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servo system. A mode switching control(MSC) scheme, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while a time optimal control method is used for target designation. In this paper, a modified PTOS(Proximate Time Optimal Servomechanism) algorithm is derived so as to accommodate the damping term in the gun plant model. Also, applying a mode switching strategy, the bumpless transfer is made possible when the controller switches from PTOS to PID. To show the effectiveness of the overall control system, simulation results are given including the gun dynamics.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

Non-Equilibrium Green Function Method in Spin Transfer Torque

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.72-76
    • /
    • 2007
  • We investigate the spin transfer torque in metallic multilayer system by employing Keldysh non-equilibrium Green function method. We study the dependences of the spin transfer torque on the detailed energy configuration of ferromagnetic, spacer, and lead layers. With Keldysh non-equilibrium Green function method applied to a single band model, we explore spin transfer torque effect in various layer structures and for various material parameters.

Finite State Model-based Predictive Current Control with Two-step Horizon for Four-leg NPC Converters

  • Yaramasu, Venkata;Rivera, Marco;Narimani, Mehdi;Wu, Bin;Rodriguez, Jose
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1178-1188
    • /
    • 2014
  • This study proposes a finite-state model predictive controller to regulate the load current and balance the DC-link capacitor voltages of a four-leg neutral-point-clamped converter. The discrete-time model of the converter, DC-link, inductive filter, and load is used to predict the future behavior of the load currents and the DC-link capacitor voltages for all possible switching states. The switching state that minimizes the cost function is selected and directly applied to the converter. The cost function is defined to minimize the error between the predicted load currents and their references, as well as to balance the DC-link capacitor voltages. Moreover, the current regulation performance is improved by using a two-step prediction horizon. The feasibility of the proposed predictive control scheme for different references and loads is verified through real-time implementation on the basis of dSPACEDS1103.

A Model of GaAs MESFET with Channel Length Modulation (채널길이 변화를 이용한 GaAs MESFET의 모델)

  • 임재완;윤현로;이기준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.547-554
    • /
    • 1990
  • Considering channel length modulation, we proposed a GaAs MESFET model for circuit simulator. In existing M.S. Shur's model, two different models are used according to pinch-off voltage of devices. One model for both type of devices was proposed. In this model we introduced weighted switching function(WSF) based on channel length modulation. This proposed model showed better accuracy comparing with existing single law model and complete velocity saturation model.

  • PDF

A Study on Power Circuit Simulation for Design of Current Source Invertera (전류형 인버터 설계를 위한 전력회로 시뮬레이션 연구)

  • 최호현;김경서
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.601-606
    • /
    • 1986
  • In this paper, two methods of power circuit simulation is described in order to obtain the back data for design of current source inverter. One is steady-state analysis by differential equations during the various operating modes. Another method uses switching function, which represents the switching pattern of inverter, and direct-guadrature model of induction motor. The results of digital computer simulation by two methods are compared with the results of laboratory test.

  • PDF

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF