• Title/Summary/Keyword: Switching controller

Search Result 827, Processing Time 0.041 seconds

Mode Switching Control Design for Gun/Turret Driving System (포/포탑 구동장치의 모드 스위칭 제어기 설계)

  • Baek, Seoung-Mun;Kim, Ji-Young;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.33-37
    • /
    • 2004
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servomechanism control. A mode switching control(MSC) system, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while proximate time optimal servo(PTOS) is used for target designation. Because gun dynamic have large damping comparing to acceleration, PTOS algorithm with damping is newly derived. This paper adopts the initial value compensation method that improve the transient response after switching. Some simulation results are given to show the effectiveness of our scheme.

  • PDF

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.

$H_{\infty}$ Switching PSS and Load Variation Analysis ($H_{\infty}$ 스위칭 제어 비선형 전력계통안정화장치(NPSS) 설계 및 부하변동 분석)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.229-231
    • /
    • 2005
  • This paper presents the nonlinear $H_{\infty}$ switching power system stabilizer (PSS) based on Lie group and Lie transformation theory. The proposed controller combines the $H_{\infty}$ switching controller and Lie theory. The proposed power system stabilizer (PSS) is used to improve the transient stability in the time-domain and to solve the problem associated with the inaccessible state variables by measuring only the angular velocity. In the simulation study, the different load conditions, fault periods, and fault locations are considered. The nonlinear time-domain simulation showed that the proposed controller was effective restoring transient stability in a one-machine infinite-bus power system.

  • PDF

DSL: Dynamic and Self-Learning Schedule Method of Multiple Controllers in SDN

  • Li, Junfei;Wu, Jiangxing;Hu, Yuxiang;Li, Kan
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.364-372
    • /
    • 2017
  • For the reliability of controllers in a software defined network (SDN), a dynamic and self-learning schedule method (DSL) is proposed. This method is original and easy to deploy, and optimizes the combination of multiple controllers. First, we summarize multiple controllers' combinations and schedule problems in an SDN and analyze its reliability. Then, we introduce the architecture of the schedule method and evaluate multi-controller reliability, the DSL method, and its optimized solution. By continually and statistically learning the information about controller reliability, this method treats it as a metric to schedule controllers. Finally, we compare and test the method using a given testing scenario based on an SDN network simulator. The experiment results show that the DSL method can significantly improve the total reliability of an SDN compared with a random schedule, and the proposed optimization algorithm has higher efficiency than an exhaustive search.

Design of High Performance Motor Driving System by using PI, P_LPF switching controller (PI, P_LPF 절환 제어기를 이용한 고성능 전동기 구동 시스템 설계)

  • Kim, Jung-Nam;Cho, Nae-Soo;Kwon, Woo-Hyen;Choi, Youn-Ho;Park, Chul-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1779-1780
    • /
    • 2008
  • This paper presents a switching system of speed controller between PI (Proportional_Integrator) and P_LPF (Proportional_Low pass filter) to improve overshoot and slow settling time in DC motor. When the integrator is saturated in the PI controller, the error signal is integrated continuously. For preventing the state, the Anti-windup scheme is proposed. But the Anti-windup scheme dose not show stable characteristics in the whole speed command section after tuned a gain. By using P_LPF switching system these problems are improved and there is no need to tune of user hereafter, when the integrator is saturated. The proposed method is verified by the simulation results using MATLAB SIMULINK.

  • PDF

A Double Band Hysteresis Current Control Method (이중밴드 히스테리시스 전류 제어 방식)

  • Oh W.H.;Yoo C.H.;Shin E.C.;Park S.M.;Noh H.Y.;Yoo J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.579-583
    • /
    • 2003
  • Hysteresis controllers are intrinsically robust to system parameters, exhibit very high dynamic response and are suitable for simple implementation. But the current control using a conventional hysteresis controller has the disadvantage that high switching frequency may happen due to lack of coordination among individual hysteresis controllers of three phases. This will of course increase the switching loss. In addition, the current error is not strictly limited. So, in this paper to reduce the switching frequency, a double band hysteresis current controller is proposed. The presented control system was tested with digital simulation in the Borland C++ program and demonstrate the advantage of proposed hysteresis current controller.

  • PDF

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

Variable Structure Controller with Time-Varying Switching Surface under the Bound of Input using Evolution Strategy (진화전략과 입력제약조건에 의한 시변스위칭면의 가변구조제어기 설계)

  • Lee, Min-Jeong;Kim, Hyeon-Sik;Choe, Yeong-Gyu;Jeon, Seong-Jeup
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.402-409
    • /
    • 1999
  • Variable structure control law is well known to be a robust control algorithm and evolution strategy is used as an effective search algorithm in optimization problems. In this paper, we propose a variable structure controller with time-varying switching surface. We calculate the maximum value of seitching surface gradient that is of the 3rd order polynomial form. Evolution strategy is used to optimize the parameters of the switching surface gradient. Finally, the proposed method is applied to position tracking control for BLDC motor. Experimental results show that the proposed method is more useful than the conventional variable structure controller.

  • PDF

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.