• 제목/요약/키워드: Switching Rectifier

검색결과 392건 처리시간 0.022초

PCR과 인버터의 결합에 의한 고조파 해석 (The Harmonic Analysis for Inverter related with PCR)

  • 강설묵;구본호;권우현;김수중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.779-781
    • /
    • 1987
  • In phase controlled rectifier(PCR), harmonica are changed according to the variation of a firing angle. These harmonics are supplied with the input of the inverter. And then, inverter output comes about the harmonics combined with the switching frequency of the inverter. Hence the efficiency of the induction motor ia decreased by the harmonic of the inverter output. In this paper, it analyzed about an effect of these harmonics ia analyzed by a computer simulation. The total harmonic distortion (THD) in the case of PCR containing the ripple was considerably larger than THO of the DC source. Therefore, it was proved that the firing angle variation of PCR had to be limited.

  • PDF

A Single-Phase Current-Source Bidirectional Converter for V2G Applications

  • Han, Hua;Liu, Yonglu;Sun, Yao;Wang, Hui;Su, Mei
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.458-467
    • /
    • 2014
  • In this paper, a single-phase current-source bidirectional converter topology for V2G applications is proposed. The proposed converter consists of a single-phase current-source rectifier (SCSR) and an auxiliary switching network (ASN). It offers bidirectional power flow between the battery and the grid in the buck or boost mode and expands the output voltage range, so that it can be compatible with different voltage levels. The topology structure and operating principles of the proposed converter are analyzed in detail. An indirect control algorithm is used to realize the charging and discharging of the battery. Finally, the semiconductor losses and system efficiency are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

Single-Chip 마이크로프로세서를 이용한 UPS용 인버터의 순시전압제어 (Single-Chip Microprocessor Based Instantaneous Voltage Control of Inverter for UPS)

  • 최재호;박세현;민완기;김재식
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제6권6호
    • /
    • pp.49-57
    • /
    • 1992
  • This paper proposes a Intel 8097 single-chip microprocessor based instantaneous voltage control scheme of inverter for UPS(Uninterruptible Power Supply). There microprocessors are used to control the output voltage and frequency of the inverter, the synchronization with by-pass, and the switching of the static switch. And the status and operating conditions of UPS systems is monitored by micro processor. The inverter output voltage is controlled instantaneously with a double regulation loop so that it has very good dynamic response for the varying loads or nonlinear loads as a rectifier. And also, the software and hardware of control system is described. From simulation and experimental results, it is shown that the proposed scheme has very good performance.

  • PDF

GaN FET를 적용한 CRM PFC의 효율특성에 관한 연구 (A study on the Efficiency characteristics of the CRM PFC using GaN FET)

  • 길용만;최현수;진기석;안태영;장진행
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.89-90
    • /
    • 2014
  • Recently, one of the switching rectifiers, Power Factor Correction Circuit is often applied in rectification stage to get high efficient conversion of AC-DC SMPS However, it becomes important to select optimal semiconductor switch as well as to design optimal rectifier for achieving higher power conversion. We performed experiments with MOSFET, SiC and GaN FET that are widely used in 600 W Interleaved CRM PFC and include the data in this report. The results are presented for discrete semiconductor and integrated implementations of interleaved CRM PFC.

  • PDF

A 3 kW Bidirectional DC-DC Converter for Electric Vehicles

  • Ansari, Arsalan;Cheng, Puyang;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.860-868
    • /
    • 2016
  • A bidirectional DC-DC converter (BDC) is an indispensable electrical unit for the electric vehicles (EVs). High efficiency, high power density, isolation, light weight and reliability are all essential requirements for BDC. In this paper, a 3 kW BDC for the battery charger of EVs is proposed. The proposed converter consists of a half-bridge structure on the primary side and an isolation transformer and a synchronous rectifier structure on the secondary side. With this topology, minimum number of switching devices are required for bidirectional power flow between the two dc buses of EVs. The easy implementation of the synchronous rectification gives advantages in terms of efficiency, cost and flexibility. The proposed BDC achieves high efficiency when operating in both modes (step-up and step-down). A 3 kW prototype is implemented to verify theoretical analysis and the performance of the proposed converter.

DC-Link Capacitor Voltage Balanced Modulation Strategy Based on Three-Level Neutral-Point-Clamped Cascaded Rectifiers

  • Han, Pengcheng;He, Xiaoqiong;Zhao, Zhiqin;Yu, Haolun;Wang, Yi;Peng, Xu;Shu, Zeliang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.99-107
    • /
    • 2019
  • This study proposes a new modulation strategy to deal with unbalanced output voltage that is based on three-level neutral-point-clamped cascaded rectifiers. The fundament idea is to reallocate the value of the voltage levels generated by each of the modules on the basis of space vector pulse width modulation. This proposed modulation strategy can reduce the switching frequency while maintaining the mutual-module voltage balance. First, an analysis of unbalanced output voltage is reflected. Then a new modulation strategy is introduced in detail. Internal module capacitor voltages are balanced by the selection of redundant vectors. Moreover, the voltage balance ability is calculated. Finally, the feasibility of this modulation strategy is verified through experimental results.

단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구 (A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter)

  • 원재선;박재욱;서철식;조규판;정도영;김동희
    • 조명전기설비학회논문지
    • /
    • 제20권2호
    • /
    • pp.16-23
    • /
    • 2006
  • 본 논문에서는 고역률을 가지고 영전압 스위칭으로 동작되는 새로운 단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터 회로에 관하여 기술하고 있다. 제안된 토폴로지는 역률 교정기로써 하프 브리지형 부스트 컨버터와 하프 브리지 고주파 공진 컨버터를 단일 전력단으로 일체화 시켰다. 역률 보상용 부스트 컨버터의 부스트 인덕터 전류를 가변 스위칭 주파수와 일정 듀티비를 가지고 불연속 전류 모드(DCM)로 동작시킴으로써 부가적인 입력 전류제어기 없이 높은 입력 역률을 얻을 수 있다. 또 제안한 토폴로지의 이론해석을 무차원화 파라미터를 도입하여 범용성 있게 하여 회로 설계 전단계에서 필요한 특성값을 도식적으로 표현하다. 첨가해, 제안한 토폴로지의 상용화 가능성과 이론해석의 정당성을 입증하기 위해 스위칭 소자로 Power-MOSFET IRF 740을 제안회로 토폴로지의 스위칭 소자로 채용해 실험 장치를 구성하여 검토를 행하였다. 제안된 컨버터는 향후 통신용 DC/DC 컨버터의 전원장치, 방전등용 진원장치 등의 전원시스템에 유용히 사용될 것으로 사료된다.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.