• Title/Summary/Keyword: Switching Element

Search Result 294, Processing Time 0.026 seconds

Finite Element Modeling of Polarization Switching in Electro-Mechanically Coupled Materials (전기-기계적으로 연성된 재료의 분극역전 거동에 대한 유한요소 모델링)

  • Kim, Sang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1697-1704
    • /
    • 2001
  • A finite element model for polarization switching in electro-mechanically coupled materials is proposed and applied to predict the switching behavior of a two-dimensional ferroelectric ceramic. A complicated micro-structure existing in the material is modeled as il continuum body and a simple 3 node triangle finite element with nodal displacement and voltage degrees of freedom is used for a finite element analysis. The elements use nonlinear constitutive equations, switching criterion and kinetic relation, fur representation of material response at strong electric and stress fields. The polarization state of the material is represented by internal variables in each element, which are updated at each simulation step based on the proposed constitutive equations. The model reproduces strain and electric displacement hysteresis loops observed in the material.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.

Structure and Implementation of Fully Interconnected ATM Switch (Part II : About the implementation of ASIC for Switching Element and Interconnected Network of Switch) (완전 결합형 ATM 스위치 구조 및 구현 (II부 스위치 엘리먼트 ASIC화 및 스위치 네트워크 구현에 대하여))

  • 김경수;김근배;박영호;김협종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.131-143
    • /
    • 1996
  • In this paper, we propose the improved structure of fully interconnected ATM Switch to develop the small sized switch element and represent practical implementation of switch network. As the part II of the full study about structure and implementation of fully interconnected ATM Switch, this paper especially describes the implementation of an ATM switching element with 8 input port and 8 output port at 155 Mbits/sec each. The single board switching element is used as a basic switching block in a small sized ATm switch for ATM LAN Hub and customer access node. This switch has dedicated bus in 12 bit width(8 bit data + 4 bit control signal) at each input and output port, bit addressing and cell filtering scheme. In this paper, we propose a practical switch architecture with fully interconnected buses to implement a small-sized switch and to provide multicast function withoutany difficulty. The design of switching element has become feasible using advanced CMOS technology and Embedded Gate Array technology. And, we also represent Application Specific Integrated Circuit(ASIC) of Switch Output Multiplexing Unit(SOMU) and 12 layered Printed Circuit Board for interconnection network of switch.

  • PDF

Analysis and Specifications of Switching Frequency in Parallel Active Power Filters Regarding Compensation Characteristics

  • Guopeng, Zhao;Jinjun, Liu
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.749-761
    • /
    • 2010
  • The switching frequency of a power device is a very important parameter in the design of a parallel active power filter (PAPF), but so far, very little discussion has been conducted on it in a quantitative manner in previous publications. In this paper, an extensive analysis on the effects of the switching frequency on the performance of a PAPF is made, and a specification of the switching frequency values with different compensation results is presented. A first-order inertia element and a second-order oscillation element are considered as approximate models of a PAPF, respectively. The compensation characteristic for each order of harmonic current is obtained at different switching frequencies. Then, the THDs of each model for the system loads of a rectifier with resistance and inductance loads are proposed. The compensation results of a PAPF controlled as a first-order inertia element are better than those of a PAPF controlled as a second-order oscillation element. With two types of system loads which are rectifier with resistance and inductance loads and rectifier with resistance, inductance and capacitance loads, the THDs of the source current after compensation are presented with different switching frequencies. The compensation characteristics for the most widely used digital control system are investigated. The situation with an analog control is the theoretical characteristic and it is the best situation. The compensation characteristic of the digital control is worse than the compensation characteristic of the theoretical characteristic. Based on these analyses, the specifications of compensation characteristics with different switching frequencies are quite straightforward. Finally, a practical design example is studied to verify the application.

Formation of Switching Zones in an AFM Tip/Ferroelectric Thin Film/BE System (AFM팁/강유전박막/전극 시스템에서의 스위칭 영역의 형성)

  • Kim, Sang-Joo;Shin, Joon-Ho;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.849-856
    • /
    • 2003
  • A three-dimensional constitutive model for polarization switching in ferroelectric materials is used to predict the formation of switching zones in an atomic force microscopy(AFM) tip/ferroelectric thin film/bottom electrode system via finite element simulation. Initially the ferrolectric film is poled upward and the bottom electrode is grounded. A strong dc field is imposed on a fixed point of the top surface of the film through the AFM tip. A small switching zone with downward polarization is nucleated and grows with time. It is found that initially the shape of the switched zone is that of a bulgy dagger, but later turn to the shape of a reversed cup with the lower part wider than the upper part. It can also be concluded that the size of switching zones increases with the period of applied electric potential. The present results are qualitatively consistent with experimental observations.

A Study On The Realization Of Multi-Threshold Function By Partition Of Switching Functions (스윗칭함수 분할에 의한 다역치함수 실현에 관한 연구)

  • Chae Tak Lim
    • 전기의세계
    • /
    • v.23 no.4
    • /
    • pp.53-59
    • /
    • 1974
  • This paper investigates the theoretical properties of a logic element called the multithreshold threshold element, which is a generalization of the single-threshold threshold element. The primary partition os a systematic method of obtaining the multi-threshold realization of a switching function by the index numbers. The concept of comparable vertices of the same index numbers introduced in this paper is very promising for testing the multi-threshold partition by the initial condition to be defined by the minterms of the same index numbers.

  • PDF

Effects of Loading on Dynamic Performance of Switching Power Converters (스위치 모드 전력변환기 동특성의 부하 영향 해석)

  • Lee, Dong-Gyu;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1518-1520
    • /
    • 2005
  • 본 논문에서는 실제 부하가 연결된 스위칭 전력 변환기 동특성의 부하 영향(leading effect)을 수식적으로 나타내고 해석하였다. 부하 시스템을 extra element로 고려하고 Middlebrook의 extra element theorem의 결과를 적용하였다. 그리고 스위칭 전력 변환기의 소신호 동특성에 대한 부하 영향을 해서하기 위해서 보드 선도 해석 방법을 이용하였다.

  • PDF

Torque Calculation of Flux Switching Motor by Winding Function Theory (Winding function theory를 이용한 flux switching motor의 토크 계산)

  • Kim, Jae-Gon;Park, Han-Seok;Woo, Kyung-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.478-482
    • /
    • 2015
  • This paper describes the torque calculation of Flux Switching Motor using Winding Function Theory. First of all, the optimized new Flux Switching Motor was proposed to minimize the torque ripple. The simulation results by the Winding Function Theory were compared with those from Finite Element Analysis. The revised Flux Switching Motor and experimental setup were manufactured. The simulation result by the Winding Function Theory was compared with that of the experiment. The comparison validated the analysis method of the Flux Switching Motor by Winding Function Theory.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.