• Title/Summary/Keyword: Switched-Current circuit

Search Result 154, Processing Time 0.03 seconds

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

Analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Kim, Young-Mun;Kang, Wook-Jung;Mun, Sang-Pil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

Coupled Field Circuit Analysis for Characteristic Comparison in Barrier Type Switched Reluctance Motor

  • Lee J.Y.;Lee G.H.;Hong J.P.;Hur J.;Kim Y.K.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.267-271
    • /
    • 2005
  • This paper deals with two kinds of novel shape switched reluctance motors (SRM) with magnetic barriers in order to improve operating performances of prototype. The magnetic barriers make rotor poles more saturated, and consequently inductance profiles are distorted. The changed inductance affects input current shape and eventually torque characteristics. In order to analyze the complicated flux pattern of the SRM with magnetic barriers and its terminal characteristics simultaneously, coupled field circuit modeling method is used. The finite element method is used to model the nonlinear magnetic field, and coupled to the circuit model of the SRM overall system. After experimental results are presented to prove the accuracy of the method, the several analysis results are compared, and the improved rotor shape is presented.

Design of a CMOS Programmable Slew Rate Operational Amplifier with a Switched Parallel Current Subtraction Circuit (병렬전류감산기를 이용한 슬루율 가변 연산증폭기 설계)

  • 신종민;윤광섭
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.730-736
    • /
    • 1995
  • This paper presents the design of a CMOS programmable slew rate operational amplifier based upon a newly proposed concept, that is a switched parallel current subtraction circuit with adaptive biasing technique. By utilizing the newly designed circuit, it was proven that slew rate was linearly controlled and power dissipation was optimized. If the programmable slew rate amplifier is employed into mixed signal system, it can furnish the convenience of timing control and optimized power dissipation. Simulated data showed the slew rate ranging from 5. 83V/$\mu$s to 41.4V/$\mu$s, power dissipation ranging from 1.13mW to 4.1mW, and the other circuit performance parameters were proven to be comparable with those of a conventional operational amplifier.

  • PDF

Three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터)

  • Suh, Ki-Youn;Lee, Hyun-Woo;Lee, Soo-Heun;Mun, Sang-Pil;Kim, Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1015-1019
    • /
    • 2001
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Lee, S.H.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.55-59
    • /
    • 2002
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current -fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

Optimal Circuit Design through Snubber Circuit Analysis (스너버(Snubber) 회로 분석을 통한 회로의 최적설계)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.137-142
    • /
    • 2023
  • When designing a SMPS(Switched Mode Power Supply) circuit, a part that is easily overlooked without special consideration is a snubber circuit. However, the performance degradation of the SMPS due to the snubber circuit and the effect on the entire SET cannot be ignored. In addition, a snubber circuit is added to both ends of the switch to protect the device from peak voltage and current during switching and to reduce loss during on/off switching. Therefore, in this paper, for a sufficient understanding of snubber circuits, theoretical analysis and experimental formulas that can be applied by designers during actual circuit design are arranged to promote optimization of snubber circuits.

Torque Control Scheme of Switched Reluctance Motor using Neural Network (신경회로망을 이용한 SRM의 토오크 제어)

  • 정연석;이장선;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.171-174
    • /
    • 1999
  • The torque of SRM is developed by phase currents and inductance variation. Phase currents and inductance variation. Phase current is often the controlled variable in electrical motor drives, so it seems natural to use closed loop current controllers. However, the highly nonlinear nature of switched reluctance motors makes optimisation of closed loop current controlled difficult because of saturation effect in magnetic circuit. Therefore, torque generation region is nonlinearly varied according to phase current and rotor position. This paper describes the torque control scheme with neural network that can control varied with load torque. The torque control is simulated by PSIM.

  • PDF

Design and Characteristics Analysis of a Transverse Flux Type Switched Reluctance Motor (횡자속형 스위치드 리럭턴스 전동기의 설계 및 특성 해석)

  • Kim, Gyeong-Ho;Jo, Yun-Hyeon;Gu, Dae-Hyeon;Jeong, Yeon-Ho;Gang, Do-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • The paper proposes the characteristics analysis for a Transverse flux type Switched Reluctance Motor(TSRM) considering the nonlinear magnetic phenomena. To investigate the nonlinear parameters of magnetic equivalent circuit, the designed TSRM is analyzed by the 2D and 3D finite element method as functions of input current and angular displacement. On the base of FEM analysis results, the current, torque, back EMF and output power wave of TSRM are simulated from the motion equation by MATLAB/Simulink. The simulated performance characteristics for a 4-phase, 24-pole TSRM are verified by experimental results of a prototype TSRM.

Performance Improvement of Current Memory for Low Power Wireless Communication MODEM (저전력 무선통신 모뎀 구현용 전류기억소자 성능개선)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • It is important to consider the life of battery and low power operation for various wireless communications. Thus, Analog current-mode signal processing with SI circuit has been taken notice of in designing the LSI for wireless communications. However, in current mode signal processsing, current memory circuit has a problem called clock-feedthrough. In this paper, we examine the connection of CMOS switch that is the common solution of clock-feedthrough and calculate the relation of width between CMOS switch for design methodology for improvement of current memory. As a result of simulation, when the width of memory MOS is 20um, ratio of input current and bias current is 0.3, the width relation in CMOS switch is obtained with $W_{Mp}=5.62W_{Mn}+1.6$, for the nMOS width of 2~6um in CMOS switch. And from the same simulation condition, it is obtained with $W_{Mp}=2.05W_{Mn}+23$ for the nMOS width of 6~10um in CMOS switch. Then the defined width relation of MOS transistor will be useful guidance in design for improvement of current memory.

  • PDF