• Title/Summary/Keyword: Switched reluctance generator (SRG)

Search Result 23, Processing Time 0.025 seconds

PI-CCC Based Switched Reluctance Generator Applications for Wind Power Generation Using MATLAB/SIMULINK

  • Kaliyappan, Kannan;Padmanabhan, Sutha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.230-237
    • /
    • 2013
  • This paper presents a novel nonlinear model of Switched Reluctance Generator (SRG) based on wind Energy Conversion system. Closed loop control with based Proportional Integrator current Chopping Control machine model is used. A Power converter in SRG can be controlled by using PI-CCC proposed model, and can be produced maximum power efficiency and minimize the ripple contents in the output of SRG. A second power converter namely PI based controlled PWM Inverter is used to interface the machine to the Grid. An effective control technique for the inverter, based on the pulse width modulation (PWM) scheme, has been developed to make the line voltage needs less power switching devices and each pair of turbine the generated active power starts increasing smoothly. This proposed control scheme feasibility and validity are simulated on SIMULINK/SIM POWER SYSTEMS only.

Output Voltage Control Method of Switched Reluctance Generator using PID Control (PID 제어를 이용한 Switched Reluctance Generator의 출력 전압제어)

  • 김영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.701-704
    • /
    • 2000
  • A SRG(Switched Reluctance Generator) has many advantages such as efficiency simple controllability low cost and robustness compared with outer machines. But the theories that have been adopted as SRG control methods up to the present are complicated. This paper proposes a simple control methods using PID which controls only a turn-off angle while making turn-on angle signals of SRG constant. controlling the voltage differences between the reference and the real value and calculating the proper turn-off angle of the load variations can implement to keep the output voltage constant. the control method suggested in this paper enhances the efficiency of this system and simplifies the hardware and software by using only the voltage and speed sensors. The proposed method is verified by experiment

  • PDF

Output Voltage Control Method of a Switched Reluctance Generator using Turn-off Angle Control (소호각 제어를 이용한 Switched Reluctance Generator의 출력 전압 제어)

  • 김영조;전형우;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.356-363
    • /
    • 2001
  • A SRG (Switched Reluctance Generator) has many advantages such as high efficiency, low cost, high-speed capability and robustness compared with other of machine. But the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using the PID controller which only controls turn-off angles while keeping turn-on angles of SRG constant. In order to keep the output voltage constant, the turn-off angle for load variations is controlled by using linearity between the generated current and turn-off angle since the reference generated current can be led through the voltage errors between the reference and the actual voltage. The suggested control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and the speed sensors. The proposed method is verified by experiments.

  • PDF

Adaptive Sliding Mode Observer for DC-Link Voltage Control of Switched Reluctance Generator without Position Sensor (적응 슬라이딩 모드 관측기를 이용한 Switched Reluctance Generator의 위치 센서 없는 구동에 관한 연구)

  • Choi, Yang-Kwang;Kim, Young-Seok;Kim, Young-Jo;Choi, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.179-182
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, the sensor is able to required to eliminated from the SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is implemened by the adaptive sliding observer and that it is able to estimate the rotor position well is proved by the simulation.

  • PDF

Thyristor-Based Resonant Current Controlled Switched Reluctance Generator for Distributed Generation

  • Emadi Ali;Patel Yogesh P.;Fahimi Babak
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.68-80
    • /
    • 2007
  • This paper covers switched reluctance generator (SRG) and its comparison with induction and synchronous machines for distributed generation. The SRG is simple in design, robust in construction, and fault tolerant in operation; it can also withstand very high temperatures. However, the performance and cost of the SRG power electronics driver are highly affected by the topology and design of the converter. IGBT and MOSFET based converters are not suitable for very high power applications. This paper presents thyristor-based resonant converters which are superior candidates for very high power applications. Operations of the converters are analyzed and their characteristics and dynamics are determined in terms of the system parameters. The resonant converters are capable of handling high currents and voltages; these converters are highly efficient and reliable as well. Therefore, they are suitable for high power applications in the range of 1MW or larger for distributed generation.

Characteristics Analysis According to Switching of Switched Reluctance Generator (스위치드 릴럭턴스 발전기의 스위칭에 따른 특성)

  • Oh, Jae-Seok;Oh, Ju-Hwan;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1356-1361
    • /
    • 2008
  • A switched reluctance generator(SRG) has simple magnetic structure, and needs simple power electronic driving circuit. But, a SRG are no windings or permanent magnets on the rotor, and there are concentrated windings placed around each salient pole on the stator. Because of the characteristics of time-sharing excitation, the control of SRG is very flexible. And there are several parameters for controlling SRG, such as switch turn-on angle, switch turn-off angle, and exciting voltage and controlling mode, all these will affect the generation greatly. A SRG has positive torque at increasing inductance region and negative torque at decreasing inductance region. In this paper, we studied characteristics about the switch turn-on and off angles according to switch method for constant output voltage of the fixed speed SRG. It is the acoustic noise and torque ripple characteristics. Characteristics for a switch angle and method are presented by experiment using a 50W SRG with 12/8 poles.

A Study on Sensorless Control of Switched Reluctance Generator Using Instantaneous Inductance (인덕턴스를 이용한 Switched Reluctance Generator의 위치센서 없는 구동에 관한 연구)

  • Oh, Sung-Bo;Kim, Young-Seok;Kim, Young-Jo;You, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.317-319
    • /
    • 2001
  • A Switched Reluctance Generator attracts much attention in the generator because of high efficiency, simplicity, and ruggedness. However, they require rotor position information to operate. In many systems, the rotor position sensor is expensive, limited and undesirable. This paper describes a new approach to estimating the rotor position of a SRG from the measured terminal voltage and current for rotor position sensorless control. The proposed method Is based on the instantaneous inductance of the SRG. The proposed technique is very simple and it is able to apply to high speed operation under the stable condition because of its simplicity. The initial rotor position estimation algorithm is efficient and reliable. The proposed method is verified by computer simulation.

  • PDF

Design of a Switched Reluctance Generator for Small Wind Power Systems (소형 풍력 발전용 스위치드 릴럭턴스 발전기의 설계)

  • Shin, Hye-Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.405-410
    • /
    • 2015
  • This paper deals with the design method of 1kW-Switched Reluctance Generator (SRG) for wind power applications. The coefficient of the output equation is determined according to the purpose specification for design of SRG. Detailed design is carried out, after selecting the outer diameter of the rotor on the basis of the output equation. The generation characteristic of designed generator is verified by using Finite Element Method (FEM).

Efficiency Analysis of Switched Reluctance Generator According to Current Shape under Rated Speed

  • Yu, Siyang;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.491-497
    • /
    • 2013
  • This paper introduces the high efficiency operation of switched reluctance generator (SRG). The proposed SRG operates under the rated speed. The high efficiency can be obtained by the optimal current shape which can make the total losses minimum. For this purpose, theoretical analysis of the copper and core loss is done. In addition, a modified angle position control (MAPC) method which can get the optimal current shape over wide speed condition is presented. In order to verity the theory, the experimental platform is set up. The feasibility of the theory is verified by the simulation and experimental results. The proposed method is simple, reliable and easy to achieve.

Power Closed-loop Control of Switched Reluctance Generator for High Efficiency Operation

  • Li, Zhenguo;Gao, Dongdong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.397-403
    • /
    • 2012
  • This paper describes a control method of turn-on/off angles to improve the efficiency of the switched reluctance generator(SRG) with a power closed-loop control system, and the inner-loop of the system is current hysteresis control. The SRG control system is constituted by the PI power controller and the two-level current hysteresis controller. By measuring and analyzing the system losses of different reference powers, speeds and turn-on/off angles, selection strategy of optimal turn-on/off angles is discussed. The proposed method is simple, reliable, and easy to achieve.