• Title/Summary/Keyword: Switchable 3D applications

Search Result 5, Processing Time 0.029 seconds

The development of 42' 2D/3D switchable display

  • Kang, H.;Jang, M.K.;Kim, K.J.;Ahn, B.C.;Yeo, S.D.;Park, T.S.;Jang, J.W.;Lee, K.I.;Kim, S.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1311-1313
    • /
    • 2006
  • Stereoscopic/autostereoscopic systems have been developed in order to express true 3D images, but have never had great success in the practical use. In order to apply 3D display to promising applications such as advertisements and games, we've developed a 42" 2D/3D switchable display. It has characteristics that don't require special glasses for 3D images, use multi-view technology for improving 3D viewing characteristics, and has a 2D/3D switching function to express dynamic 3D contents as well as conventional 2D contents.

  • PDF

Polarization-Dependent Microlens Array Using Reactive Mesogen Aligned by Top-Down Nanogrooves for Switchable Three-Dimensional Applications

  • Son, Ki-Beom;Kim, Mugeon;Park, Min-Kyu;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • We propose a reactive mesogen (RM) lens array to obtain good focusing behavior along with a short focal plane, where the focusing behavior is switchable according to the polarization state of incident light. Polarization-dependent focusing behavior is obtained using a planoconvex RM microlens array on a planoconcave isotropic lens template. Even though the sagitta of our RM lens is high, to obtain the short focal length, the RM layer can be aligned well by introducing a top-down alignment effect, using a nanogrooved template. The optical noise due to the $moir{\acute{e}}$ effect generated by the nanogrooves on the surface of the planoconvex RM layer can be removed simply by overcoating a thin RM layer, which is self-aligned by the geometric surface effect, without an additional alignment process. We demonstrate a hexagonal-packed RM lens array that has a very high fill factor and symmetric phase profile, for an ideal lens.

The Development of 42' 2D/3D Switchable Display

  • Kang, Hoon;Jang, Mi-Kyoung;Kim, Kyeong-Jin;Ahn, Byung-Chul;Chung, In-Jae;Park, Tae-Soo;Chang, Jin-Wook;Lee, Kyoung-Il;Kim, Sung-Tae
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Stereoscopic/autostereoscopic systems have been developed to express 3D images, but have not been successfully use in practise. In order to apply 3D display to promising applications such as advertisements and games, we developed a 42" 2D/3D switchable display. It has characteristics that do not require special glasses for 3D images, uses multi-view technology for improving 3D viewing characteristics, and has a 2D/3D switching function to express dynamic 3D contents as well as conventional 2D contents.

A Design of Frequency Synthesizer for T-DMB and Mobile-DTV Applications (T-DMB 및 mobile-DTV 응용을 위한 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • A Frequency synthesizer for T-DMB and mobile-DTV applications was designed using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors were chosen for VCO core to reduce phase noise. The VCO range is 920MHz-2100MHz using switchable inductors, capacitors and varactors. Varactor biases that improve varactor acitance characteristics were minimized as two, and $K_{VCO}$(VCO gain) value was aintained by switchable varactor. Additionally, VCO was designed that VCO gain and the interval of VCO gain were maintained using VCO gain compensation logic. VCO, PFD, CP and LF were verified by Cadence Spectre, and divider was simulated using Matlab Simulink, ModelSim and HSPICE. VCO consumes 10mW power, and is 56.3% tuning range. VCO phase noise is -127dBc/Hz at 1MHz offset for 1.58GHz output frequency. Total power consumption of the frequency synthesizer is 18mW, and lock time is about $140{\mu}s$.

Design of CMOS LC VCO with Linearized Gain for 5.8GHz/5.2GHz/2.4GHz WLAN Applications (5.8GHz/5.2GHz/2.4GHz 무선 랜 응용을 위한 선형 이득 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.59-66
    • /
    • 2005
  • CMOS LC VCO for tri-bind wireless LAN applications was designed in 1.8V 0.18$\mu$m CMOS process. PMOS transistors were chosen for VCO core to reduce flicker noise. The possible operation was verified for 5.8GHz band (5.725$\~$5.825GHz), 5.2GHz band (5.150$\~$5.325GHz), and 2.4GHz band (2.412$\~$2.484GHz) using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing technique was used for capacitance linearization and PLL stability improvement. VCO core consumed 2mA current and $570{\mu}m{\times}600{\mu}m$ die area. The phase noise was lower than -110dBc/Hz at 1MHz offset for tri-band frequencies.