• 제목/요약/키워드: Switch mode

검색결과 535건 처리시간 0.022초

소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발 (Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System)

  • 홍경진
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.179-184
    • /
    • 2019
  • 전기가 부족한 개발도상국 같은 많은 나라에서는 Off Grid 형태의 소형풍력발전이 전력공급 문제를 해결하기 위한 효율적인 핵심 솔루션이다. 몇몇 국가에서는 전력계통의 확장과 전기가 부족한 지역의 감소로 소규모 풍력을 도시의 도로 조명, 모바일 통신 기지국, 양식업 및 해수 담수 등의 분야에 이용하기도 한다. 이런 변화에 따라 소형 풍력 산업 규모는 대규모 풍력보다 큰 잠재력이 기대되고 있다. 소형 풍력발전의 경우 발전기는 가변 속도로 제어되는 특성이 있으며 발전기에서 발생하는 전압 및 전류에는 많은 고조파 성분을 가지고 있다. 이를 해결하기 위해서 본 논문에서는 소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC 변환 통합장치를 제안하며 기존 AC to DC 컨버터는 단일 스위치를 갖는 3상 승압형 방식의 컨버터로서 인덕터 전류가 불연속모드로 제어되며, 입력전류의 고조파를 제거하여 단위역률을 갖는 특성을 갖는다. 제안된 컨버터는 입력단에 LCL 필터 및 3상 정류 승압형 컨버터, 계통연계를 위한 단상 풀브릿지 형태로 구성되어 있으며 에너지저장시스템(ESS) 기능이 부가된 제어 시스템으로 풍력발전을 이동 평준화 방식에 의해 급변하는 전력에 대해 계통 안정화를 추구할 수 있다.

태양광 배터리 Hybrid 전력공급시스템 9가지 운전 모드 시험결과 및 무고장 연속 운전을 위한 자동제어 알고리즘 개발 (Experimental Test Results of Nine Scheduling Operational Modes of PV and Battery Hybrid System for the Development of Automatic Control Algorithm for Continual Operation without being shut-downed)

  • 송택호;양승권;김민정
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권1호
    • /
    • pp.25-32
    • /
    • 2019
  • K-BEMS 시스템은 태양광과 배터리를 Hybrid PCS 및 EMS로 구성하여, 건물에너지 절감 및 건물 PEAK 부하를 감축하기 위해 도입되었으며, 200여 한전 사옥에 보급되어 시범 운영되고 있다. K-BEMS 시스템을 보다 안정적으로 그리고 효율적으로 운영하기 위한 K-BEMS 연구과제를 2016년 1월부터 2018년 현재까지 전력연구원이 약 3년간 걸쳐 수행하였다. 본 논문에서는 K-BEMS 연구과제에서 수행한 9가지 Scheduling 운전 모드 시험 결과 및 3년간의 Scheduling 운전 결과 발견한 문제점, 그리고 이 문제점 해결을 위해 도입한 제어 알고리즘을 보여 주고 있다. K-BEMS 9가지 Scheduling 자동제어 운전모드 시험을 수행 하였으며, 이 중 3가지 운전모드에서 알고리즘 개선 사항을 발견하였는데, 이들 3가지 경우 모두 배터리 연계 운전과 관련이 있는 것으로 드러났다. 배터리 SOC(State of Charge)는 통상 20% 이상에서 운전되는데, 20% 이하가 되면 배터리 보호 차단기가 동작하여 K-BEMS 자동 운전이 정지되는 현상을 발생한다. 그런데 이 Hybrid 자동제어 모드에서, 배터리 차단기 trip시 태양광 공급마저 중단되는 현상을 발견하였다. 그러므로, Hybrid 공급모드에서 배터리의 차단기가 동작될 경우, 태양광 단독운전으로 자동 전환하여 태양광 공급마저 중단되지 않도록 알고리즘을 재구성하여 자동제어 운전하는 것이 총 에너지 절감 측면에서 반드시 필요한 것으로 분석되었다. 이 때, 계측제어 오차를 감안하여야 하며, 배터리 정지를 너무 보수적으로 의식하여, SOC 운전 Range를 너무 축소해서 운전하면 당초의 피크 부하 저감 이라는 경제성 목표를 달성할 수 없으므로, 효과적인 hybrid 운전(건물 피크 부하 감축 운전)을 위해서는 정지된 SOC 값을 컴퓨터가 기억하고 있다가, 향후 재가동 자동제어 운전시에서는 SOC Range값을 변경 조정 하여 최적 제어 운전하는 자동제어 알고리즘이 PV & Battery hybrid peak load demand control에서 반드시 필요한 것으로 나타났다.

센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계 (Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications)

  • 손지훈;김민석;천지민
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.454-464
    • /
    • 2023
  • 본 논문은 센서 노드 응용을 위한 1MS/s의 샘플링 속도를 가지는 저전력 8비트 비동기 축차근사형(successive approximation register, SAR) 아날로그-디지털 변환기(analog-to-digital converter, ADC)를 제안한다. 이 ADC는 선형성을 개선하기 위해 부트스트랩 스위치를 사용하며, 공통모드 전압(Common-mode voltage, VCM) 기반의 커패시터 디지털-아날로그 변환기 (capacitor digital-to-analog converter, CDAC) 스위칭 기법을 적용하여 DAC의 전력 소모와 면적을 줄인다. 외부 클럭에 동기화해서 동작하는 기존 동기 방식의 SAR ADC는 샘플링 속도보다 빠른 클럭의 사용으로 인해 전력 소비가 커지는 단점을 가지며 이는 내부 비교를 비동기 방식으로 처리하는 비동기 SAR ADC 구조를 사용하여 해결할 수 있다. 또한, 낮은 해상도의 설계에서 발생하는 큰 디지털 전력 소모를 줄이기 위해 동적 논리 회로를 사용하여 SAR 로직를 설계하였다. 제안된 회로는 180nm CMOS 공정으로 시뮬레이션을 수행하였으며, 1.8V 전원전압과 1MS/s의 샘플링 속도에서 46.06𝜇W의 전력을 소비하고, 49.76dB의 신호 대 잡음 및 왜곡 비율(signal-to-noise and distortion ratio, SNDR)과 7.9738bit의 유효 비트 수(effective number of bits, ENOB)를 달성하였으며 183.2fJ/conv-step의 성능 지수(figure-of-merit, FoM)를 얻었다. 시뮬레이션으로 측정된 차동 비선형성(differential non-linearity, DNL)과 적분 비선형성(integral non-linearity, INL)은 각각 +0.186/-0.157 LSB와 +0.111/-0.169 LSB이다.

온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구 (Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature)

  • 진승희;장희원;김우주
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.253-266
    • /
    • 2018
  • 본 연구는 질의 응답(QA) 시스템에서 사용하는 개체명 인식(NER)의 성능을 향상시키기 위하여 시퀀스 태깅 방법론을 적용한 새로운 방법론을 제안한다. 사용자의 질의를 입력 받아 데이터베이스에 저장된 정답을 추출하기 위해서는 사람의 언어를 컴퓨터가 알아들을 수 있도록 구조화 질의어(SQL)와 같은 데이터베이스의 언어로 전환하는 과정이 필요한데, 개체명 인식은 사용자의 질의에서 데이터베이스에 포함된 클래스나 데이터 명을 식별하는 과정이다. 기존의 데이터베이스에서 질의에 포함된 단어를 검색하여 개체명을 인식하는 방식은 동음이의어와 문장성분 구를 문맥을 고려하여 식별하지 못한다. 다수의 검색 결과가 존재하면 그들 모두를 결과로 반환하기 때문에 질의에 대한 해석이 여러 가지가 나올 수 있고, 계산을 위한 시간복잡도가 커진다. 본 연구에서는 이러한 단점을 극복하기 위해 신경망 기반의 방법론을 사용하여 질의가 가지는 문맥적 의미를 반영함으로써 이러한 문제를 해결하고자 했고 신경망 기반의 방법론의 문제점인 학습되지 않은 단어에 대해서도 문맥을 통해 식별을 하고자 하였다. Sequence Tagging 분야에서 최신 기술인 Bidirectional LSTM-CRF 모델을 도입함으로써 신경망 모델이 가진 단점을 해결하였고, 학습되지 않은 단어에 대해서는 온톨로지 기반 특성치를 활용하여 문맥을 반영한 추론을 사용하였다. 음악 도메인의 온톨로지(Ontology) 지식베이스를 대상으로 실험을 진행하고 그 성능을 평가하였다. 본 연구에서 제안한 방법론인 L-Bidirectional LSTM-CRF의 성능을 정확하게 평가하기 위하여 학습에 포함된 단어들뿐만 아니라 학습에 포함되지 않은 단어들도 포함한 질의를 평가에 사용하였다. 그 결과 L-Bidirectional LSTM-CRF 모형을 재학습 시키지 않아도 학습에 포함되지 않은 단어를 포함한 질의에 대한 개체명 인식이 가능함을 확인하였고, 전체적으로 개체명 인식의 성능이 향상됨을 확인할 수 있었다.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.