• Title/Summary/Keyword: Switch circuit

Search Result 955, Processing Time 0.04 seconds

Circuit Design of an RSFQ 2$\times$2 Crossbar Switch for Optical Network Switch Applications (광 네트워크 응용을 위한 RSFQ 2$\times$2 Switch 회로의 설계)

  • 홍희송;정구락;박종혁;임해용;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • In this Work, we have studied about an RSFQ 2$\times$2 crossbar switch. The circuit was designed, simulated, and laid out for mask fabrication The switch cell was composed of a splitter a confluence buffer, and a switch core. An RSFQ 2$\times$2 crossbar switch was composed of 4 switch cells, a switch control input to select the cross and bar, data input, and data outputs. When a pulse was input to the switch control input to select the cross or bar the route of the input data was determined, and the data was output at the proper output port. We simulated and optimized the switch-element circuit and 2$\times$2 crossbar switch, by using Xic and Julia. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF

Realization of 10/350 Peaking Circuit for appling crowbar switch (Crowbar 스위치용 10/350 피킹(peaking) 회로 구현)

  • Cho, Sung-Chul;Lee, Tae-Hyung;Eom, Ju-Hong;Yoo, Yang-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.327-329
    • /
    • 2009
  • A first short stoke current which has a 10/350 ${\mu}s$ waveform is able to be generated by using the crowbar switch in R-L-C circuit. In this paper, a peaking circuit has been applied to make crowbar switch. Operate effective for generating 10/350 ${\mu}s$ waveform. According to simulation with PSpice, we have found that some value of inductance were more effective to trigger a crowbar switch. As a result of experimental test using crowbar switch with peaking circuit, the success rate of triggering crowbar switch is higher than the normal crowbar switch without peaking circuit.

  • PDF

Circuit Design and Simulation Study of an RSFQ Switch Element for Optical Network Switch Applications (광 네트워크 스위치 응용을 위한 RSFQ Switch의 회로 설계 및 시뮬레이션)

  • 홍희송;정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • In this work, we have studied about an RSFQ (Rapid Single Flux Quantum) switch element. The circuit was designed, simulated, and laid out for mask fabrication. The switch cell was composed of a D flip-flop, a splitter, a confluence buffer, and a switch core. The switch core determined if the input data could pass to the output. “On” and o“off” controls in the switch core could be possible by utilizing an RS flip-flop. When a control pulse was input to the “on” port, the RS flip-flop was in the set state and passed the input pulses to the output port. When a pulse was input to the “off” port, the RS flip-flop was in the reset state and prevented the input pulses from transferring to the output port. We simulated and optimized the switch element circuit by using Xic, WRspice, and Julia. The minimum circuit margins in simulations were more than $\pm$20%. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF

The study of a primary role of Back up Breaker and Making Switch for Short Circuit Test (단락시험에서 후비보호차단기와 투입스위치의 중요 역할)

  • Kim, Sun-Koo;Kim, Seon-Ho;Kim, Won-Man;Roh, Chang-Il;Lee, Dong-Jun;Jung, Heung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.915-916
    • /
    • 2007
  • There are many equipments for the Short Circuit Test, for example Short Circuit Generator, Induction Motor, Sequence Timer, Exciter, CLR, Back Up Breaker, Making Switch and TRV etc. Especially Back up Breaker and Making Switch are very important equipments to test the short circuit test. A role of a Back up Breaker is to break high-voltage and high-current for short circuit test and a Making Switch should be operated always same speed/time and kept electrical-mechanical characteristics to make the voltage and current of short circuit test. This study introduces to the short circuit test also to kinds, principal movements and compare them of Back up Breaker and Making Switch.

  • PDF

High Efficiency Buck-Converter with Short Circuit Protection

  • Cho, Han-Hee;Park, Kyeong-Hyeon;Cho, Sang-Woon;Koo, Yong-Seo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.425-429
    • /
    • 2014
  • This paper proposes a DC-DC Buck-Converter with DT-CMOS (Dynamic Threshold-voltage MOSFET) Switch. The proposed circuit was evaluated and compared with a CMOS switch by both the circuit and device simulations. The DT-CMOS switch reduced the output ripple and the conduction loss through a low on-resistance. Overall, the proposed circuit showed excellent performance efficiency compared to the converter with conventional CMOS switch. The proposed circuit has switching frequency of 1.2MHz, 3.3V input voltage, 2.5V output voltage, and maximum current of 100mA. In addition, this paper proposes a SCP (Short Circuit Protection) circuit to ensure reliability.

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

Soft Switching boost converter for reduction of switch stress (스위치 스트레스 저감이 가능한 소프트 스위칭 부스트 컨버터)

  • Park, Seung-Won;Kim, Jun-Gu;Kim, Jae-Hyung;Eom, Ju-Kyoung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.155-157
    • /
    • 2009
  • This paper proposed a soft switching boost converter with an auxiliary circuit, and a modified control method for reduction of switch stress. The proposed converter applies an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft switching for both a main switch and an auxiliary switch. The auxiliary circuit consist of a resonant inductor and two capacitors, an auxiliary switch. The main switch is operated ZVS turn-on, turn-off also auxiliary switch is operated ZCS turn-on, ZVS turn-off. The proposed soft switching boost converter has lower switch loss and higher efficiency than conventional soft switching boost converter.

  • PDF

Performance Improvement of Current Memory for Low Power Wireless Communication MODEM (저전력 무선통신 모뎀 구현용 전류기억소자 성능개선)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • It is important to consider the life of battery and low power operation for various wireless communications. Thus, Analog current-mode signal processing with SI circuit has been taken notice of in designing the LSI for wireless communications. However, in current mode signal processsing, current memory circuit has a problem called clock-feedthrough. In this paper, we examine the connection of CMOS switch that is the common solution of clock-feedthrough and calculate the relation of width between CMOS switch for design methodology for improvement of current memory. As a result of simulation, when the width of memory MOS is 20um, ratio of input current and bias current is 0.3, the width relation in CMOS switch is obtained with $W_{Mp}=5.62W_{Mn}+1.6$, for the nMOS width of 2~6um in CMOS switch. And from the same simulation condition, it is obtained with $W_{Mp}=2.05W_{Mn}+23$ for the nMOS width of 6~10um in CMOS switch. Then the defined width relation of MOS transistor will be useful guidance in design for improvement of current memory.

  • PDF

Optimization Design for the Use of Mechanical Switch in Z-source DC Circuit Breaker (Z-source 직류 차단기의 기계식 스위치 적용을 위한 최적화 설계)

  • Lee, Hyeon Seung;Lee, Kun-A
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Circuit breakers are a crucial factor in ensuring the safety of a Direct Current (DC) grid. One type of DC circuit breaker, the Z-source DC circuit breaker (ZCB), uses a thyristor, which is a type of semiconductor switch. In the event of a fault in the circuit, the ZCB isolates the fault by generating a zero crossing current in the thyristor. The thyristor quickly and actively isolates the fault while generating a zero crossing current, but thyristor switch cannot control turn-off and the allowable current is lower than the current of the mechanical switch. Therefore, it is best to use a mechanical switch with a high allowable current capacity that is capable of on/off control. Due to the slow reaction time of mechanical switches, they may not isolate the fault during the zero crossing current time interval created by the existing circuit. In this case, the zero crossing current time can be increased by using the property that hinders the rapid change in the current of the inductor. This paper will explore whether adding system inductance to increase the zero crossing current time interval is a solution to this problem. The simulation of changing inductor and capacitor (LC) of the circuit is repeated to find an optimal change in the zero crossing current time according to the LC change and provides an inductor and capacitor range optimized for a specific load. The inductor and capacitor range are expected to provide optimization information in the form LC values for future applications of ZCB's using a mechanical switch.

A Study on Width of Dummy Switch for performance improvement in Current Memory (Current Memory의 성능 개선을 위한 Dummy Switch의 Width에 관한 연구)

  • Jo, Ha-Na;Hong, Sun-Yang;Jeon, Seong-Yong;Kim, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.485-488
    • /
    • 2007
  • 최근 Analog Sampled-Data 신호처리를 위하여 주목되고 있는 SI(Switched-Current) circuit은 저전력 동작을 하는 장점이 있지만, 반면에 SI circuit에서의 기본 회로인 Current Memory는 Charge Injection에 의한 Clock Feedthrough이라는 치명적인 단점을 갖고 있다. 따라서 본 논문에서는 Current Memory의 문제점인 Clock Feedthrough의 일반적인 해결방안으로 Dummy Switch의 연결을 검토하였고, Austria Mikro Systeme(AMS)에서 $0.35{\mu}m$ CMOS process BSIM3 Model로 제작하기 위하여 Current Memory의 Switch MOS와 Dummy Switch MOS의 적절한 Width을 정의하여야 하므로, 그 값을 도출하였다. Simulation 결과, Switch의 Width는 $2{\mu}m$, Dummy Switch의 Width는 $2.35{\mu}m$로 정의될 수 있음을 확인하였다.

  • PDF