• Title/Summary/Keyword: Swirl-chamber

Search Result 207, Processing Time 0.019 seconds

Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine (연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향)

  • Lee, Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine (직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화)

  • 주봉철;노병준;김규철;이삼구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

Preliminary Combustion Tests in Bi-Swirl Coaxial Injectors Using Gaseous Methane/Gaseous Oxygen Propellants (기체메탄/기체산소 추진제를 이용한 동축 와류형 분사기에서의 예비 연소실험)

  • Hwang, Donghyun;Bak, Sujin;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.70-80
    • /
    • 2019
  • Combustion tests using six bi-swirl coaxial injectors with different shapes and recess lengths were performed in a model combustion chamber capable of flame visualization. By utilizing gaseous methane and gaseous oxygen instead of actual propellants, the effects of injector design and experimental conditions on the flame structure and combustion stability were analyzed. It was found that not only the experimental conditions but also the injector geometry such as the recess length and orifice diameter had a considerable influence on the combustion stability. In addition, it was confirmed that the heat release pattern changed with the occurrence of combustion instability.

A Study on Flame and Dynamic Characteristics of Injectors in Liquid Rocket Engine (액체로켓엔진 분사기의 화염 및 동적 특성 연구)

  • Song, Ju-Young;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Seol, Woo-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.141-145
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess length have been tested for the comparative study of CH flame structure and dynamic characteristics. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a full-scale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

Investigation of the Swirling Flow Fields of a Gun-Type Gas Burner by the Measurement of a Five-Hole Pressure Probe (5공 압력프로브의 측정에 의한 Gun식 가스버너의 스월유동장 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-23
    • /
    • 2015
  • The swirling flow fields of a gun-type gas burner(GTGB) without a combustion chamber were measured by a straight-type five-hole pressure probe(FHPP) under the cold flow condition. The three kinds of velocity components and the static pressure were calculated by using a non-nulling calibration method covering the velocity reduction performance of the effective flow attack angle of ${\pm}80^{\circ}$. As a result, the velocity and static pressure measured by a FHPP comparatively shows the better performance on the swirling flow of a GTGB than those measured by X-probe.

Research of the Improvement of Solid Fuel Regression Rate in Swirl Hybrid Rocket (선회류 하이브리드 로켓에서 고체 연료 후퇴율 향상에 대한 연구)

  • Park Jong-Won;Lee Choong-Won;Ku Kun-Woo;Yoon Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.233-238
    • /
    • 2006
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, swirl flow hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured by using ultrasonic sensor technique in entire firing conditions. In this study, PMMA fuel and HTPB solid fuel were used in firing test.

  • PDF

Mixing Characteristics of Kerosene-Lox in a Swirl Injector at 100 bar

  • Heo, Junyoung;Kang, Jeongseok;Sung, Hong-Gye
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.30-38
    • /
    • 2016
  • The The turbulent mixing characteristics of Kerosene-LOx in a coaxial swirl injector 100 bar have been numerically investigated. Turbulent model is based on large eddy simulation with real-fluid transport and thermodynamics. The effects of equation of state (EOS), chamber pressure are evaluated in a point of the mixing efficiency and pressure fluctuations. The dominant frequency is same as the hairpin vortex shedding frequency generated by film wave at the LOx post.

Liquid film Thickness Measurement for a Swirl Injector (스월 인젝터에서의 액막두께 측정에 관한 연구)

  • Kim Sung-Hyuk;Kim Dong-Jun;Yoon Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.70-77
    • /
    • 2006
  • A specially designed in;ector using electric conductivity was used to measure the liquid film thickness exactly, The measurement conducted through the precise calibration, accuracy is demonstrated in comparison with the previous theory and the results using other measurement method. The variation of internal flow and stability are examined through the variation of liquid film thickness by the time. The tendency of liquid film thickness for geometric parameters was examined by the precise measurement.