• Title/Summary/Keyword: Swirl velocity

Search Result 319, Processing Time 0.027 seconds

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Feature of Spray Transport and Atomization from Two-Phase Swirling Jet with Air-to-Liquid Mass Ratio (공기액체질량비에 따른 이류체 선회형 분사의 분무거동 및 미립화 특성)

  • Lee, Sam-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Experiments were performed in a two-phase swirling spray facility that has been described elsewhere. Measurements of spray transport and drop size distribution are analyzed over wide ranges of air to liquid mass flow ratios, utilizing four different internal mixing pneumatic nozzles. The spatial distributions of mean velocities. fluctuating velocities, and velocity-diameter correlation were quantitatively analyzed. Also, the exponential correlation curves were obtained with ALR along the spray centerline, which indicated an approximately identical formulation regardless of ALR. It indicated that the atomization characteristics were remarkably superior in the case of 30o of swirl angle with higher ALR. Among other things. nozzle configuration is one of the significant parameters affecting spray phenomena from an internal mixing nozzle. Turbulence intensities are increasingly degenerated with an increase of nozzle configuration, allowing a rapid increment of drop size distribution.

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Experimental Study on Dynamic Characteristics of an Impinging Jet Injector (충돌형 분사기의 동특성 실험연구)

  • Kim, Jiwook;Chung, Yunjae;Lee, Ingyu;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.86-94
    • /
    • 2013
  • Research on dynamic characteristics of injectors gives us insight for preventing combustion instability in a rocket engine. While lots of studies have been done about swirl injectors' dynamic characteristics, little is known about impinging jet injectors' dynamic characteristics. For this reason, this study was aimed to reveal the dynamic characteristics of an impinging jet injector based on experiment using a hydraulic mechanical pulsator. Gain, which is the relationship between input pressure and output value(pressure or velocity) was analyzed with the frequency and manifold pressure change. Pulsating frequency was chosen in the low range: 5, 10, 15 Hz. As a background work, Methods to determine the jet velocity were discussed. Klystron effect was also considered as a factor of this experiment.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

Effects of spray nozzles on the structure of twin spray (이중 분무의 중첩 구조에 미치는 분무 노즐의 영향)

  • Jurng, J.S.;Park, C.B.;Im, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.51-59
    • /
    • 1996
  • An experiment was carried out on the structure of twin spray from pressurize-swirl nozzles, in order to investigate the effect of different size of spray nozzles on the characteristics of the overlap of two single sprays, for example, mean diameter, number density, and spatial distribution of flow rate. Using image processing method, the distributions of size and velocity of droplets of a single spray and twin spray were measured and compared to investigate the overlapping effect of two identical sprays. Comparing experimental results from a twin-spray with those from two-single sprays shows that the flow rate distribution of the twin-spray was concentrated around the midst of the overlapping region of two sprays. In this region, Sauter mean diameter (SMD) did not change much in the twin spray from 6032 nozzles, but it was smaller by 10 micrometers in the twin-spray than two-single sprays from 60063 nozzles. In spite of large difference in Weber numbers of the colliding sprays between the 60063 and 6032 nozzles, the phenomena did not have a big change in the overlapping region of twin spray. This shows that in the collision between droplets from two single spray in the overlapping region to cause the disruption of droplets, the size distribution of spray droplets was also important as well as Weber number.

  • PDF

Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator (배열회수 안내덕트 내부의 난류유동 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.809-813
    • /
    • 2011
  • Turbulent flows are numerically simulated in the three dimensional inlet duct for heat recovery steam generator. The present study is aimed to analyze the effect of a variation in turbulent flow pattern by the change of roof angle in the transition duct. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the flow dynamic phenomena. Reviews are made on with the data of path lines, velocity vectors, dynamic pressure, residuals for numerical convergence and so on. The k-epsilon, k-omega, Reynolds stress and RNG k-epsilon are used for generation of turbulence. Two types of roof angle are applied with and without the swirl in the duct. Turbulent flow patterns could be investigated for the optimum duct design based on the computational results.

An Experiment on Low NOx Combustion Characteristics in a Multi-Staged Burner (다단연소기를 이용한 저 NOx 연소특성 연구)

  • Cho, Eun-Seong;Sung, Yong-Jin;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Staged combustion, such as air- and fuel-staging, is a relatively well-known technique fur reduction of NOx emission and used in combination with other techniques nowadays. However, the design variables are still selected depending upon operating conditions. There are many variables tested to investigate the NOx emission characteristics fur changing of fuel or air velocity, swirl intensity, and staging ratio of air and fuel in multi-staged burner. In air-staging case, the fuel-rich condition of the primary combustion zone is very helpful to reduce NOx emission and its range is known to be restricted by the increase of carbon monoxide. However, in many cases carbon monoxide level is not too high to be restricted operating condition. So we tried to expand the equivalence ratio range to the richer condition in the primary combustion zone and certificate the function of each burner component and its contribution to the overall NOx production.