• Title/Summary/Keyword: Swirl intensity

Search Result 141, Processing Time 0.023 seconds

A Study on the Combustion Characteristics with Hydrogen Contents of SNG Fuel in Low-Swirl Combustor (저선회 연소기에서 합성천연가스(SNG) 연료의 수소함량에 따른 연소 특성 연구)

  • JEONG, HWANGHUI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • This paper describes experimental results on combustion characteristics with hydrogen contents of synthetic natural gas (SNG) in low swirl combustor. To investigate the effect of hydrogen contents for premixed SNG flame, stability map, CH chemiluminescence images, flame spectrum analysis and emission performances were measured. In the results, as the hydrogen content was increased, the lean flammable limit was expanded and the flame length was decreased. The hydrogen contents affected the flame liftoff height, and it has different tendency according to the equivalence ratio and flame shape. The change of height and length of flame according to hydrogen contents is caused by the fast burning velocity of hydrogen, which can be confirmed by GRI 3.0 reaction mechanism in PREMIX code. The intensity of $OH^*$, $CH^*$ and $C_2^*$ was confirmed by spectrum analysis of flame. As a result, the $CH^*$ intensity was not significantly different according to hydrogen content. The increase of hydrogen contents influenced positively CO and NOx emission performances.

A Study on the Decrease Fuel Consumption of SCV in a High Speed Small SI Engine (소형 고속 SI 엔진에서 SCV의 연비저감 효과에 관한 연구)

  • Lee, Seung-Jin;Ryu, Jeong-In;Jeong, Dong-Soo
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.180-186
    • /
    • 2005
  • As an engine has a wide range of RPM $(3000\~12000\;RPM)$, variable control system is necessary in order to increase engine performance. SCV has been frequently referred to as a possible way to increase engine performance at low RPM. The purpose of this study is to investigate on the influence of SCV, specially at the range of lower revolution, in a high-speed small engine. Experiments were conducted on 4 Valves SOHC/air-cooling single cylinder engine and SCV shapes have been tested fur swirl intensity, the performance of power, fuel consumption and emission. As a result, we find to use SCV range be below 5000 RPM which fuel consumption decreased $9\%$.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

A Numerical Study on the Characteristics of Tumble and Internal Flow According to Intake Port for Marine Engine (선박용 엔진의 흡기포트 형상에 따른 텀블 및 내부 유동 특성에 관한 수치적 연구)

  • Lee, Byoung-Hwa;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.498-505
    • /
    • 2008
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. The combustion phenomena of reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. To know this relationship definitely, this paper describes analytical results of the tumble motion, swirl motion, turbulence intensity, turbulence inside the cylinder of marine engine. 3-D computation has been performed by using STAR-CD solver and es-ice.

An Experimental Study on Swirling flow in a Cylindrical Annuli (원형 이중관 내의 선회유동에 관한 실험적 연구)

  • Chang T. H.;Lee K. S.;Lee H. S.;Kang C. S.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.89-95
    • /
    • 2002
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid. Using the Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulent intensity with swirl for Re = 20,000, 30,000, 50,000, and 70,000 along longitudinal sections and the results appear to be physically reasonable.

  • PDF

Flow and Heat Transfer Characteristics of Impinging Single Circular Swirl Jet on Flat Plate (원형 선회류제트 충돌면에서의 유동 및 열전달 특성)

  • Jang, Jong-Chul;Jeon, Young-Woo;Park, Si-Woo;Chung, In-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 2004
  • The experimental study on flow and heat transfer characteristics was conducted to investigate and to compare the performance of swirl jet by a twisted tape as a swirl generator with the performance of impinging single circular jet in fully developed flow tube. The effects of jet Reynolds number(Re=8700, 13800, 20000, 26500), dimensionless distance of nozzle-to-plate(H/d=2, 4, 6, 8) and swirl ratio(S=0.11, 0.23, 0.30) of the jet on the local and average Nusselt number have been examined. Measurements of local heat transfer rate and flow patterns on the jet impinging plate were used naphthalene sublimation technique and flow visualization technique respectively. Mean velocity and turbulence intensity of the jet along the centerline were measured. With a twisted tape in the nozzle exit, average Nusselt number at the around area of stagnation point were higher than those without the twisted tape at H/d=2, 4 and with the increase of Reynolds number. With a twisted tape in the nozzle, in the case of H/d=2, Re=26500 and S=0.11, maximum local Nusselt number at the region of y/d=0 and x/d=0.44 was obtained.

The Effects of Operating Conditions and Injector Geometry on the Spray Characteristics of Swirl Injectors (스월 인젝터의 작동조건 및 인젝터 형상에 따른 분무특성)

  • Kim, D.J.;Im, J.H.;Han, P.G.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • The flow characteristics of a swirl injector were investigated with the variation of the flow condition and geometric dimensions, such as orifice length for considering the viscous effect and tangential entry port area for considering the swirl intensity. The liquid film thickness strongly influencing on the formed drop size of the spray was measured using a new technique. The film thickness measurement technique proposed here, used the attenuation of fluorescence signal near the injector exit. The breakup length that is important for the flame location as well as the spray cone angle which influences on the ignition performance was measured using a backlit stroboscopic photography technique. From the experimental results, it is found that an increase in injection pressure decreased the film thickness and breakup length, and also enlarged the spray cone angle. A decrease in orifice length and tangential entry port area has a similar tendency of thinner film thickness, shorter breakup length and larger spray cone angle. In the present study, we proposed empirical models of the flow characteristics of the swirl injectors.

  • PDF

Experimental Studies on Self-Oscillation of a Swirl Coaxial Injector

  • Kim, Dongjun;Wonho Jeong;Jihyuk Im;Youngbin Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.228-233
    • /
    • 2004
  • The spray and acoustic characteristics by the self-oscillation of a swirl coaxial injector were experimentally studied. The self-oscillation of a swirl coaxial injector is defined as pressure and flowrate oscillations by a time-delayed feedback between liquid and gas phase and has strong influences on atomization and mixing processes. Hence the occurrence and effect of the self-oscillation are measured using shadow photography technique, acoustic test and PDPA. The occurrence of self-oscillation largely depends on the injection conditions, such as pressure drop of liquid phase and relative momentum ratio. From the experimental results, self-oscillation occurs when the momentum of gas phase is enough large and the smaller the pressure drop of liquid phase is, the better self-oscillation occurs at the same momentum ratio. The self-oscillation is also affected by injector geometries, increasing the recess length results in the expansion of self-oscillation region and the increase of sound pressure level. The self-oscillation of a swirl coaxial injector accompanies a high intensity scream and this scream may provide harmful disturbances to combustion processes. Self-oscillation leads to strong changes in the drop size distribution and smoothly varies the slope of radial SMD distribution.

  • PDF

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.