• Title/Summary/Keyword: Swirl intensity

Search Result 141, Processing Time 0.022 seconds

Three-Dimensional Flow Analysis for Estimation of Measuring Error oi Orifice Flowmeter due to Swirling Flow (선회로 인한 오리피스 유량계의 계량오차 예측을 위한 삼차원 유동해석)

  • Kim Hong-Min;Kim Kwang-Yong;Her Jae-Young;Ha Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.79-82
    • /
    • 2002
  • Three-dimensional pipe flows with elbows and tees for few different pipe fittings are calculated to estimate the effect of swirling flow on measuring accuracy of orifice flow meter. It is evaluated how the pressure difference across the orifice is dependent on the length of upstream straight pipe in a branch and how swirl intensity, swirl angel and axial velocity distribution affect the measuring error of orifice flowmeter. From the results, it is found that, regardless of flow rate specified in this calculation, the effect of the straight pipe length can be neglected for the lengths larger than thirty diameters although there still remain significant swirl at the orifice

  • PDF

Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame (메탄/수소 혼합 가스의 예혼합 선회 연소특성)

  • Kim, Han-Seok;Lee, Young-Duk;Choi, Won-Seok;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

An Investigation of Swirling Flow in a Cylindrical Tube

  • Chang, Tae-Hyun;Kim, Hee-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1892-1899
    • /
    • 2001
  • An experimental study was performed for measuring velocity and turbulence intensity in a circular tube for Re= 10,000, 15,000 and 20,000, with swirl and without swirling flow. The velocity fields were measured using PIV techniques and swirl motion was produced by a tangential inlet condition. Some preliminary measurements indicated that over the first 4 diameter, two regions of flow reversal were set up (the so called 2-cell structure). At the highest Reynolds numbers, the maximum values of the measured axial velocity components had moved toward the test tube wall and produce more flow reversal at the conter of the tube. As the Reynolds number increased, the turbulence intensity of swilling flow at the tube inlet also increased.

  • PDF

The characteristics of static pressure recovery in a conical diffuser with a swirling flow (선회류 유입에 대한 원추디퓨저의 정압회복 특성)

  • Jeong, Hyo-Min;Jeong, Han-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.937-945
    • /
    • 1998
  • The purpose of this paper is to investigate the relationship between pressure recovery and turbulent characteristic value of velocity and pressure, in the case where a swirling flow streams into a conical diffuser. The results of both measurements of the wall pressure fluctuation and velocity fluctuation revealed them to role the large part of the total pressure loss of the flow. The cause of the fluctuation of flow was showed to be the flow separation at the inlet of diffuser at low intensity of swirl, but the flow of diffuser center was instable at high intensity of swirl. The static pressure recovery depends strongly on the magnitude of the turbulent energy in the diffuser, and that this magnitude of the turbulent energy varies as the intensity of swirl at the diffuser inlet.

Optimal Gas-Flow Conditions for Stabilization of Lean-Burn Combustion (희박연소 안정화를 위한 가스유동장 조건에 관한 연구)

  • 이기형;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.763-770
    • /
    • 1995
  • Gas flow characteristics within the cylinder is important factors in impoving lean combustion stability. This paper shows the effects of various flow fields generated by a swirl control valve(SCV) on combustion process in a 4-valve spark ignition engine. An impulse swirl/tumble meter was used to elucidation the steady-state flow characteristics, and a rotating grating type LDV was developed to measure the mean velocity and tunbulence intensity in relation to the crank angle. These methodologies were applied to clarify the correlation between gas flow characteristics and combustion stability at a lean air fuel ratio. An analysis of the correlation revealed the gas flow conditions required to optimize a lean-burn system.

A Study on the Normal Combustion and Abnormal Combustion in Automotive S.I.Engine (Knocking Phenomena in Quiscent or Swirl Flow Field) (자동차용 가솔린 기관의 정상연소 및 이상연소에 관한 연구)

  • Lee, K.W.;Fujimoto, H.;Park, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.250-261
    • /
    • 1995
  • In this study, a rapid compression and expansion machine(RCEM) equipped with a swirl generator was designed and developed, in order to clarify normal and abnormal combustion(knocking phenomena). This RCEM is intended to simulate combustion process in actual automotive S.I.engines, having a high reproducibility in the compression stroke. Flame propagation and autoignition processes associated with normal and abnormal combustion were captured by the high speed schlieren photography. And swirl intensity. equivalence ratio and ignition position were varied to investigate the effect of turbulence, concentration in the unburnt gas region and flame propagation length. The knock intensity, knock mass fraction and knock mass fraction after autoignition were calculated by use of history of measured cylinder pressure.

  • PDF

Turbulence Enhancement Characteristics Analysis of Inclined-Tumbles for Various SCV Configurations (SCV형상별 경사텀블유동의 난류증가 특성 해석)

  • Lee, J.W.;Kang, K.Y.;Choi, S.H.;Park, S.C
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.234-242
    • /
    • 1998
  • It has been demonstrated that the in-cylinder turbulence is enhanced by inclined swirl with a SCV(swirl control valve). The inclined-tumble flow measurement and analysis were performed for various types of intake systems that generated several different combinations of swirl ratio and tumble ratio in the cylinder. Experiments were conducted in a 4-valve optically accessed transparent research engine using a backward-scatter LDV mode under motoring condition at 1,000rpm. The influence of swirl/tumble levels on the characteristics of turbulence was analysed. This study presents experimental results of the inclined-tumble flow structure, including the flow motion phenomena, angular momentum and turbulence intensity.

  • PDF