• Title/Summary/Keyword: Swirl injector

Search Result 274, Processing Time 0.026 seconds

Effect of Multi-Swirl Injector on Acoustic Damping for Reduction of Combustion Instability (연소불안정 저감을 위한 다중 스월 인젝터의 음향학적 감쇠기능)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.62-71
    • /
    • 2008
  • Swirl injector with adjustable backhole length was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and its damping capacity is verified in atmospheric temperature. Experiments were carried out with copied tubes on air core because the interior air core volume of injector has a direct effect on damping. From the experimental data, it is proved that increasing the number of injectors mounted at each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed at each anti-node point of model chamber, the damping effect of tuned injectors with multi modes agree well with it of tuned injectors with single mode.

Combustion Tests of Sub-scale Combustor for a Liquid Rocket Engine with Internal Mixing Swirl Injector (내부혼합 동축 와류형 분사기를 장착한 액체로켓엔진용 축소형 연소기의 연소시험)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • The combustion test results of the sub-scale combustor having dual swirl injector with internal mixing for a liquid rocket engine are described. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has an injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors of internal mixing. The combustion tests were successfully performed at design and off-design points without any damages on the injectors. Combustion characteristics velocity of 1756m/s was measured at design point. High frequency combustion instability was not observed but low frequency pulsations occurred at off-design conditions.

Enhancement of hybrid rocket regression rate by swirl flow and helical grain configuration (선회류와 나선형 그레인 형상을 이용한 하이브리드 로켓의 연소율 향상)

  • Hwang Young-Chun;Lee Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.318-322
    • /
    • 2005
  • In this study the regression rate of hybrid rocket fuel has been investigated by swirl injectors and helical grains. Tests have been done with two kinds of injector and helical grain. In this paper the swirl injector and helical grain were varied to find the optimal condition to obtain the max regression rate for a given operational condition.

  • PDF

Effects of Swirl number and Recess length on Flame Structure of Supercritical Kerosene/LOx Double Swirl Coaxial Injector (선회수와 리세스 길이가 초임계상태 케로신/액체산소 이중 와류 동축형 분사기의 화염구조에 미치는 영향 해석)

  • Park, Sangwoon;Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.33-35
    • /
    • 2012
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl number on flame structure of supercritical kerosene/LOx double swirl coaxial injector.

  • PDF

The Phenomena of Injection Instability for Simplex Swirl Injector (Simplex Swirl Injector의 Injection Instability에 관한 연구)

  • Park, Byung-Sung;Kim, Ho-Young;Chun, Chul-Kyeun
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.287-293
    • /
    • 2005
  • Most of all combustion system has combustion instability. It is a serious problem in combustion system. Unstable injection is one of the source of combustion instability. The experimental investigation of spray characteristics for simplex swirl injector were conducted experimentally. Two kerosene based fuels were chosen as the atomizing fluid. As the major operating parameters, fuel temperature and injection pressure were chosen, and varied in the range from 253 K to 293 K and from 0.2 MPa to 1.0 MPa, respectively. Direct spray images and mean diameter were measured for the various combination of operating parameters in the flow field. The results of present study show that the injection pressure and spray cone angle are fluctuated at specific conditions while it is continuous steady injection. As the fuel temperature changes continuously, spray cone angle varies discontinuously through the region of injection instability.

  • PDF

In-Cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF

Experimental Study on the Internal Flow Characteristics in a Swirl Coaxial Injector for Gas Generator (가스발생기용 스월 동축형 인젝터에서 내부 유동의 특성에 대한 실험적 연구)

  • Kim, Sung-Hyuk;Yoon, Jung-Soo;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.29-33
    • /
    • 2010
  • This study aim to investigate the internal flow characteristics by recess length of swirl coaxial injector for gas generator has propellant of Kerosene-LOx. Recess length is a very important element, have influence in spray stability and LOx post damage. The influence of recess length was analyzed by visualizing internal flow and measuring liquid film thickness and manifold pressures. Also, each spray characteristic by recess length was investigated in internal or external injector.

  • PDF

A Study on the Local Regression Rate of Solid Fuel in Swirl Injection Hybrid Rocket (스월 인젝션 하이브리드 로켓의 고체연료 국부 후퇴율에 관한 연구)

  • Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Gi-Hun;Cho, Jung-Tae;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.77-81
    • /
    • 2008
  • The local regression rate behavior of solid fuel in swirl injection hybrid rocket were studied. In generally, axial injection regression rate was tending to be decrease with axial distance, beyond which increased with increasing axial distance from the leading edge. On the other hand, swirl injection regression rate was high at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection was increased about 54% for the overall regression rate of axial injection. Through this study, it was found that using swirl injector was useful in applying to the small sounding rocket.

  • PDF

Study of High Altitude Operation for Air Swirl Injector in Tangential Swirl Combustor (Tangential Swirl 연소기에 적용된 스월인젝터의 고고도 운전성능 연구)

  • Park, Hee-Ho;Ryu, Se-Hyun;Koo, Hyun-Cheol;Lee, Seong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.825-828
    • /
    • 2010
  • APU for aircraft is operated under severe condition as high altitude and low temperature, and demand high reliability in flight. This study is to be verified of the ignition and the combustion stability of APU under the harsh conditions. The basic data obtained in combustion rig test were directly applied to the altitude test with a engine. That start logic was obtained in ground development test. The results of altitude test show that air swirl injector has good operation and ignition performance at 20kft, hot/cold($-40^{\circ}C$) day.

  • PDF

Characteristics of Unielement Injector Combustion with Flow rates and Chamber Pressures (유량 및 연소압에 따른 액체로켓 단위분사기 연소특성 변화)

  • Moon Il-Yoon;Kim Jong-Gyu;Han Yeoung-Min;Yoo Jin;Lee Yang-Seok;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • In the case of appling a unielement injector developed for a full scale liquid rocket combustor, a operating condition or configuration of the injector is changed by combustion pressure, arrangement and injector quantity of a full scale liquid rocket combustor. In order to verify application, swirl coaxial injectors propelled by jet-A1 and liquid oxygen are tested at different conditions of a combustion pressure, a flowrate and an injector length. As a test result, the application of the present swirl coaxial injectors is excellent because an efficiency of a characteristic velocity is increased at the each test condition beyond that variation of dynamic pressure intensity is small.

  • PDF