• 제목/요약/키워드: Swirl flow hybrid motor

검색결과 5건 처리시간 0.02초

선회류 하이브리드 로켓의 고체 연료 후퇴율에 관한 연구 (The Effect of Swirl Flow on Solid Fuel Regression Rate of Hybrid Rocket)

  • 박종원;박주혁;이충원;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.311-317
    • /
    • 2005
  • 하이브리드 로켓은 기존의 고체, 액체 로켓에 비하여 많은 이점을 가지고 있다. 본 연구에서는 선회류 하이브리드 로켓을 설계 및 제작하여 regression rate의 증진 방안을 모색하고자 하였다. 산화제 선회강도의 변화에 따라 연소실 압력을 측정하여 추력을 계산하였으며, 연소과정의 가시화를 통해 근사적 regression rate를 측정하였다. 또한 하이브리드 로켓 시험 중 발생할 수 있는 문제점과 해결 방안도 제시하였다.

  • PDF

선회류 하이브리드 로켓의 고체 연료 후퇴율에 관한 연구 (The Study on Solid Fuel Regression Rate of Swirl Hybrid Rocket)

  • 박종원;박주혁;이충원;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.53-56
    • /
    • 2005
  • 하이브리드 로켓은 기존의 고체, 액체 로켓에 비하여 많은 이점을 가지고 있다. 본 연구에서는 선회류 하이브리드 로켓을 설계 및 제작하여 regression rate의 증진 방안을 모색하고자 하였다. 산화제 선회강도의 변화에 따라 연소실 압력을 측정하여 추력을 계산하였으며, 연소과정의 가시화를 통해 근사적 regression rate를 측정하였다. 또한 하이브리드 로켓 시험 중 발생할 수 있는 문제점과 해결 방안도 제시하였다.

  • PDF

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.

선회류 하이브리드 로켓에서 고체 연료 후퇴율 향상에 대한 연구 (Research of the Improvement of Solid Fuel Regression Rate in Swirl Hybrid Rocket)

  • 박종원;이충원;구건우;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.233-238
    • /
    • 2006
  • 하이브리드 로켓은 고체 및 액체 로켓에 비해 많은 장점을 가지고 있다. 본 연구에서는 선회류 하이브리드 로켓을 디자인 및 제작하여 고체 연료 후퇴율 향상 방법에 대해 연구되었다. 산화제 유량 조건에 대해 추력이 계산되었으며 초음파 센서를 이용하여 전체 연소 조건에 대해 고체 연료의 후퇴율을 측정하였다. 본 연구에서는 PMMA 고체 연료 및 HTPB 고체 연료가 사용되었다.

  • PDF

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF