• Title/Summary/Keyword: Swirl center

Search Result 101, Processing Time 0.026 seconds

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine (편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석)

  • 김홍석;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

A Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Model Engine (3차원 모형기관 실린더내의 흡입과정 유동에 대한 수치해석)

  • 하각현;김원갑;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1994
  • A model engine having a flat cylinder head and a piston face and an off-center intake valve is investigated in this analysis. Calculation domain is confined to the half of the cylinder with swirl free inlet velocity condition. Due to the absence of measured inlet conditions, the inlet flowrates during induction period are calculated from overall mass and energy conservation requirements. Finite difference equation for velocity and pressure were solved by modified SIMPLER algorithm, standard k-$\varepsilon$turbulence model and hybrid scheme. From the result of prediction, dimensionless velocity distribution and turbulence intensities are investigated at each crank angle.

  • PDF

Effect of Ambient Pressure on Internal Structure of a DI Gasoline Spray (직분식 가솔린 분무의 내부구조에 미치는 분위기 압력의 영향)

  • 성기진;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.19-26
    • /
    • 2002
  • The objective of this study is to examine a DI(Direct Injection) gasoline spray development process under different ambient pressures using PIV(Particle Image Velocimetry). fuel spray experiments were performed within a constant volume chamber. The spray structure, velocity maps, velocity and vorticity contours were obtained to investigate its spray characteristics. It was found that higher ambient pressure has a significant effect on radial growth of the spray. The position which has a maximum velocity moved from the spray edge to the spray center as ambient pressure was increased. Higher ambient pressure moved a maximum vorticity position upward of the spray.

Experimental Study and Numerical Simulation of Cavity Oscillation in a Diffuser with Swirling Flow

  • Chen, Chang-Kun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Miyazawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.80-90
    • /
    • 2010
  • The cavity oscillation with swirling flow in hydraulic power generating systems was studied by a simple experiment and numerical simulation. Several types of fluctuation were observed in the experiment, including the cavitation surge caused by the diffuser effect and the vortex precession by the swirling flow. Both cavitation surge and vortex precession were simulated by CFD. Detailed flow structure was examined through flow visualization and CFD.

Average Droplet Size Distribution of a GDI Spray by Simultaneous Fluorescence/Scattering Image Technique (형과/산란광 동시 측정에 의한 GDI 분무의 평균 입경 분포에 관한 연구)

  • Gwak, Su-Min;Ryu, Gyeong-Hun;Choe, Dong-Seok;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.868-875
    • /
    • 2001
  • The objective of this study is to investigate the average droplet size distributions of a GDI spray by simultaneous fluorescence/scattering image technique. GDI engine is recently very popular because of high engine efficiency and low emissions. However, the injectors must have good spray characteristics because the fuel is directly injected into the cylinder. The fuel mixtures used in this study were 2% of fluorobenzene, 9% of DEMA(diethyl-methyl-amine) and 89% of hexane by volume. The system for obtaining 2-D fluorescence/scattering images of fuel spray was constituted of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the fluorescence to the scattering intensities, SMD distributions were obtained. SMD measured by the technique was compared with that obtained by PDA. It was found that average droplet size was bigger at spray center in the early stage of injection and at the outer periphery of the spray in the late stage of injection.

Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice

  • Maniquiz, Marla C.;Choi, Ji-Yeon;Lee, So-Young;Cho, Hye-Jin;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.215-223
    • /
    • 2010
  • This study attempted to develop and suggest a more appropriate method for the determination of event mean concentration (EMC) and pollutant removal efficiency of a stormwater best management practice (BMP) considering rainfall. The stormwater runoff and hydrologic data gathered from 22 storm events during a 28-month monitoring period on a swirl and filtration type of BMP were used to evaluate the developed methods. Based on the findings, the modified EMC method resulted in lower (average) values than the overall EMC, although the differences were not significant (P>0.05). By comparison, the developed 'Rainfall Occurrence Ratio' (ROR) method was most significantly correlated (r=0.967 to 988, P<0.009) with the other existing removal efficiency determination methods such as the 'Efficiency Ratio' (ER), 'Summation of Loads' (SOL) and 'Regression of Loads' (ROL) methods. In addition, the ROR method gave the highest efficiency values, with no significant differences with any of the pollutant parameters, unlike the other three methods. These results were obtained because the ROR method integrated both pollutant loading and rainfall, which are not considered by the other three methods. Therefore, this study proved the suitability of the modified EMC and ROR methods for application in other BMP monitoring studies.

The Patients' Experiences of the Diagnosis and Pre-Treatment Period of Breast Cancer (유방암 환자의 치료 전 경험)

  • Suh, Eun-Young E.;Park, Yeon-Hwan;Kim, Sung-Jae
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 2008
  • Purpose: To date most research related to patients with breast cancer has discriminately investigated the status within or after the treatment although the patients demand holistic nursing care from the time of diagnosis. Thus, the purpose of this study was to investigate the trajectory of breast cancer diagnosis and patients' experiences in the pre-treatment period. Method: This qualitative study used qualitative thematic analysis. Nineteen Korean women who were diagnosed with breast cancer within the last 6 month participated in the study. Individualized interviews were conducted with each participant in a cancer center in K city. The interviews were tape-recorded, transcribed, and analyzed using the thematic analysis process. Results: The overriding theme was "the scattered life in an unforeseen swirl", which illustrates the participants' unexpected crisis with confusion and emotional distress. Two subthemes included "falling into an unavoidable journey", and "staggering in a muddle with urgency". The categories were "unexpected probability", "nagging nodularity", "ominous presentiment", "emotional upheaval", "bad thought intrusion", and "a sense of urgency". Conclusion: Patients in the pre-treatment period encountered utter emotional distress and a sense of urgency after being diagnosed breast cancer. Strategies to develop nursing care for patients in this period and nursing implications are discussed.

  • PDF

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.

Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter (경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가)

  • Jeong, Seonghun;Park, Sung-Eun;Kim, Min-Jung;Cho, Hyung-Jei;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.