• Title/Summary/Keyword: Swirl center

Search Result 101, Processing Time 0.024 seconds

The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine (직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향)

  • Hwang, Pil-Su;Gang, Jeong-Jung;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine (피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구)

  • Hwang, Pil-Su;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner (미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향)

  • Shin, Minho;Sung, Yonmo;Choi, Minsung;Lee, Gwangsu;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Improvement of Emission Performances of a HSDI Diesel Engine with Partial Premixed Compression Ignition Combustion Method (부분 예혼합 압축착화 연소기법을 적용한 HSDI 디젤엔진의 배기 성능 개선)

  • Chung, Jae-Woo;Kang, Jeong-Ho;Kim, Nam-Ho;Min, Kyoung-Doug;Lee, Ki-Hyung;Lee, Jeong-Hoon;Kim, Hyun-Ok;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.88-96
    • /
    • 2008
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. This study used a split injection method at a 4 cylinder common-rail direct injection diesel engine in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications And it is investigated that the effects of the injection ratio and SCV(swirl control valve) to emission characteristics. From these tests, soot(g) and NOx(g) emission could be reduced to 40% and 92% compared to base engine performance at specified engine driving conditions(6 points with weight factors) according to application of split injection and SCV(swirl control valve).

A Study on Flowfield and Pressure Recovery in a Conical Diffuser with a Swirl Flow (유입 선회류에 대한 원추디퓨져내의 속도분포와 정압회복특성에 관한 연구)

  • Jeong, Hyo-Min;Koh, Dae-Kwon;Yang, Jung-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 1992
  • The purpose of this paper is to investigate the relationship between static pressure recovery and velocity distributions in case of swirling flow into a conical diffuser. In this research, velocity distribution is measured by a multi-hole yaw-meter. The following conclusions can be drawn from the experiments. (1) The static pressure recovery depends strongly on the strength of a swirl. (2) A high pressure recovery coefficient is achieved by inserting a solid core into the diffuser center.

  • PDF

Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition (비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 -)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

A Study on the Fuel Behaivor with Cavity Diameter in a Gasoline Direct Injection Engine (직분식 가솔린 엔진에서 피스톤 캐비티 반경에 따른 연료 거동 분석)

  • Kim, Tae-An;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.472-477
    • /
    • 2003
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The images of vapor phases were measured in the motoring engine using exciplex fluorescence method. The conventional engine was modified as GDI engine with swirl flow. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behavior and fuel distribution inside of cylinder. Three injection timings were set at BTDC $180^{\circ}$, $60^{\circ}$and $60^{\circ}$. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture was concentrated in near the cavity center. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture level in the center region was highest in the S-type during the late compression stroke. With a fuel injection timing of BTDC $180^{\circ}$, fuel was not affected in a piston cavity and generally distributed as homogeneous mixture.

  • PDF