• Title/Summary/Keyword: Swirl Effect

Search Result 373, Processing Time 0.027 seconds

An Effect of Fuel Property on the Spray characteristics of Swirl Injector for Use HCCI engine (연료 물성치 변화가 HCCI용 스월 인젝터의 분무특성에 미치는 영향)

  • Jeong, Hae-Young;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.478-483
    • /
    • 2003
  • This paper describes spray characteristics of a swirl injector which is intended for use in a HCCI engine. Many optical diagnostics such as laser diffraction methods, and high speed camera photography are applied to measure the spray drop diameter and to investigate the spray development process. The effect of fuel properties on the spray characteristics was investigated using three different fuels because HCCI combustion is tolerant of the chemical composition of various fuels. From these results, the HCCI injector formed a hollow cone sheet spray rather than a liquid jet and the atomization efficiency is high for the low-pressure injector. The SMD of test injector was ranged from $15{\mu}m$ ${\mu}m$ We also found that the spray breakup characteristics were dependent on the fuel properties such as density, viscosity, and surface tension.

  • PDF

Effect of Swirl Injector with Variable Backhole on Acoustic Damping in Liquid Rocket Engine (액체로켓 스월인젝터의 음향학적 감쇠기능)

  • ;;;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.79-86
    • /
    • 2006
  • Swirl injector with adjustable backhole length was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of variable backhole injector as an acoustic absorber, backhole injector was regarded as a quarter-wave resonator. As a result of theoretical approaches and acoustic tests, backhole injector with adjustable length could decrease the unstable modes of combustion chamber. And the damping efficiency was estimated by measuring damping rates experimentally.

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

A Study on the Measurement of Temperature and Soot in a Visualized D.I Diesel Engine Using the Laser Diagnostics (광계측 기법을 이용한 직분식 디젤 가시화 엔진내의 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.38-47
    • /
    • 2007
  • Based upon temperature calibration using the diffusion flame, the temperature and soot concentration of the turbulent flame in a visualized Diesel engine's turbulent flow of flame was qualitatively measured. Two different heads were used to judge the effect of swirl ratio within the combustion chamber. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that the swirl head engine managed up to 2100K. Also, the more the pressure of the spray increases the more the temperature increases due to the improved combustion situation with respect to the visualized diesel engine soot. This experiment also revealed that the KL factor was high where the fuel collided with the walls of the combustion chamber. Moreover the KL factor was high on parts of the chamber where the temperature dropped rapidly.

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

A Study of the Combustion Characteristics Using a 2-valve Sl Optically Acessible Engine with SCV (SCV를 장착한 2밸브 Sl 가시화기관의 연소특성에 관한 연구)

  • Jeong, Gu-Seop;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1692-1701
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve SI optically accessible engine with swirl control valve(SCV). It adapted three different types of SCV(open ratio 72.5%, 78%, 59%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt) were calculated to explain burn rate and flame speed. From acquired flame images, we inspected the flame propagation direction, flame area, and flame centroid. Flame propagation direction showed different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame images at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

The Effects of Operating Conditions and Injector Geometry on the Spray Characteristics of Swirl Injectors (스월 인젝터의 작동조건 및 인젝터 형상에 따른 분무특성)

  • Kim, D.J.;Im, J.H.;Han, P.G.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • The flow characteristics of a swirl injector were investigated with the variation of the flow condition and geometric dimensions, such as orifice length for considering the viscous effect and tangential entry port area for considering the swirl intensity. The liquid film thickness strongly influencing on the formed drop size of the spray was measured using a new technique. The film thickness measurement technique proposed here, used the attenuation of fluorescence signal near the injector exit. The breakup length that is important for the flame location as well as the spray cone angle which influences on the ignition performance was measured using a backlit stroboscopic photography technique. From the experimental results, it is found that an increase in injection pressure decreased the film thickness and breakup length, and also enlarged the spray cone angle. A decrease in orifice length and tangential entry port area has a similar tendency of thinner film thickness, shorter breakup length and larger spray cone angle. In the present study, we proposed empirical models of the flow characteristics of the swirl injectors.

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Vector Fields and Mean Velocities - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 벡터장 및 평균속도에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2000
  • This paper represents the vector fields and three dimensional mean velocities in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. This experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component is focused in the narrow slits distributed radially on the edge of a cone type swirl burner, for that reason, there is some entrainment of ambient air in the outer region of the burner and the rotational flow can be shown in the inner region of the burner because mean velocity W is distributed about twice as large as mean velocity V due to inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the mean velocities are largely distributed near the outer region of burner within $X/R{\fallingdotseq}1.5$, hence, the turbulent characteristics are anticipated to be distributed largely in the center of this region due to the large inclination of mean velocity and swirl effect.

  • PDF

Experimental Studies on Self-Oscillation of a Swirl Coaxial Injector

  • Kim, Dongjun;Wonho Jeong;Jihyuk Im;Youngbin Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.228-233
    • /
    • 2004
  • The spray and acoustic characteristics by the self-oscillation of a swirl coaxial injector were experimentally studied. The self-oscillation of a swirl coaxial injector is defined as pressure and flowrate oscillations by a time-delayed feedback between liquid and gas phase and has strong influences on atomization and mixing processes. Hence the occurrence and effect of the self-oscillation are measured using shadow photography technique, acoustic test and PDPA. The occurrence of self-oscillation largely depends on the injection conditions, such as pressure drop of liquid phase and relative momentum ratio. From the experimental results, self-oscillation occurs when the momentum of gas phase is enough large and the smaller the pressure drop of liquid phase is, the better self-oscillation occurs at the same momentum ratio. The self-oscillation is also affected by injector geometries, increasing the recess length results in the expansion of self-oscillation region and the increase of sound pressure level. The self-oscillation of a swirl coaxial injector accompanies a high intensity scream and this scream may provide harmful disturbances to combustion processes. Self-oscillation leads to strong changes in the drop size distribution and smoothly varies the slope of radial SMD distribution.

  • PDF