• Title/Summary/Keyword: Swirl Chamber

Search Result 207, Processing Time 0.024 seconds

A Study on the Characteristics of Spray of Swirl Nozzle for Desel Engine Injector(I) (디젤기관용 와류분사 밸브의 분무특성에 관한 연구 (1) (대기압하의 분사))

  • 안수길;노철승;박상길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.88-97
    • /
    • 1984
  • The combustion process and the performance of a diesel engine are considerably affected by the characteristics of fuel spray. It is known that the spray of swirl nozzle for diesel engine injector of small orifice ratio becomes soft spray that has no core, therefore its penetration, one of the characteristics of spray becomes werse inspite of its good dispersion. In this paper, the spray characteristics of variously designed swirl nozzle for diesel injector were investigated by the photographic method. The nozzles, used in this experiment, vary in the diameter of swirl chambers and orifice ratio. From the results of the study, the sprays of this type nozzle of optimum swirl chamber and orifice ratio show that penetration decreased slightly but dispersion and spray volume increased remarcably, compared with unswirled single hole nozzle of the same size. It was suggested as a reason for the results, that the spray of this type swirl nozzle is similar to hard spray, therefore the core of the spray sustains good penetration considerably.

  • PDF

A Study on the Characteristics of Swirl Flow in a Diesel Engine by 2-Zone Energy Method and Image Process of Flame (2영역 에너지법과 화염 화상 처리법을 이용한 디젤 연소실내 스월 유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1655-1662
    • /
    • 2002
  • Recently, many researches have been performed to improve the performance of the combustion and emission in a D.I.Diesel engine. And many new techniques have been introduced and developed to reduce NO$_{x}$ and soot exhausted from diesel combustion. Some of these methods have the peculiar injection timing which is not used to traditional timing. To optimize these injection timing, characteristics of swirl flow and interaction of swirl with injection in the diesel engine should be investigated more carefully. Therefore, in this study, 2-zone energy method is adopted for the understanding of swirl flow in condition of moving piston, and then flame visualizations and image process are performed. From these studies, the characteristics of the swirl flow generated by SCV was investigated and the effect of swirl on injection timing was elucidated. As the results, velocity distribution caused by swirl flow increase the space utilization rate of flame plums. And flame plums of weak momentum are remained inside of combustion chamber by the swirl flow.w.

A Study on the Effects of the Swirl Flow on the Distribution of Soot in the D.I. Diesel Engine (스월 유동이 직분식 디젤엔진 내의 Soot 분포에 미치는 영향에 관한 연구)

  • Lee, Gi-Hyeong;Jeong, Jae-U;Lee, Chang-Sik;Park, Hyeon-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.458-464
    • /
    • 2002
  • Recently, many researches have been performed to improve performances of the combustion and emission in the D.I.Diesel engine. Especially reduction of the soot formation in tole combustion chamber is the essential to acquire the improvement of the emission performance. These emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Thus, in this study, the distribution of soot in the diesel combustion is measured by LII(laser induced incandescence) and LIS(Laser induced scattering) method. From this experimental results, it is confirmed that the swirl flow intensified by SCV(swirl control valve) is effective on the reduction of soot in the combustion chamber.

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

The behavior of swirl and tumble ratio in the combustion chamber of 4-valve engine with valve positions (밸브위치에 따른 4밸브 엔진 연소실 내부의 스월비와 텀블비의 거동)

  • Kim, Sung-Joon;Lee, Chon-Sik;Chun, Bong-Jun;Lee, Yong-Il
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.51-57
    • /
    • 1999
  • This research has an object to find out how the position of inlet valve influence swirling and tumbling of turbulence inside the combustion chamber of 4 valve engine. The computational analysis of three dimensional complicated turbulence flow in the cylinder is done by the KIVA-3V program to carry out this object. One use 6 valve positions with the bowl type of piston cavity. The swirl ration and the tumbling ratio of flow filed are evaluated quantitatively to find out how each valve position influence flow phenomena in the combustion chamber during the intake and compression processes.

  • PDF

Effects of Injector Recess and Combustion Chamber Length on Combustion Stability of Swirl Coaxial Injectors (동축 와류형 분사기의 연소안정성에 대한 분사기 리세스 및 연소실 길이의 영향)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In this study, model combustion tests were conducted to investigate the combustion instability characteristics of swirl coaxial injectors for a liquid rocket engine. To examine the effects of the combustion chamber resonant frequency and the injector mixing conditions, pressure fluctuations in the combustion chamber were measured by changing the combustion chamber length, injector recess length, and propellant mixture ratio. From the test results, the variation in the pressure fluctuations for each experimental condition was confirmed and the combustion stability was evaluated by stability mapping. It was found that the longitudinal mode and Kelvin-Helmholtz instabilities occurred due to the change in the combustion chamber and recess lengths.

A Study on the Wide Reach Nozzle of Sprayer (V) -The Long Range Nozzle- (휴반용 분무기의 Nozzle에 관한 연구(V) -원거리용 Nozzle-)

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3991-4000
    • /
    • 1975
  • It is the aim of this study to investigate the influence of the factors in the sprayer nozzle for the travelling distance and to get nozzle design data in relation to the nozz1e with and without swirl plate. The factors of sprayer nozzle are composed of the spraying pressure, the helical angle of swirl plate, the helical groove depth of swirl plate, the distance of vortex chamber the slope of nozz1e cap, the curvature of nozzle cap and the hole diameter of nozz1e cap. The travelling distance and the size of sprayed particle are experimeted indoors by the factorial arrange-ment according to the 5 each level of the above factors. The results of this stupy are summarized as follows; 1. In the nozzle with swirl p1ate there were remarkable significance among factors each other, while without swirl plate were no significance. 2. The helical angle and groove depth in the nozzle with swirl plate were the highest effective factors. The effect of helical angle was very remarked in the quadratic curve with minium value. 3. The correlation betweenthe travelling distance and the sprayed particle size was no high and under 250 micron in the case with swirl plate, and there was higher correlation in the case without swirl plate. 4. The new ideal development of the swirl plate using of the most effective helical angle and groove depth will probably show the possiblities to make effective travelling distance over 8 meters and more over and to make average particle diameter under 300 micron.

  • PDF

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.