• Title/Summary/Keyword: Swirl

Search Result 1,159, Processing Time 0.025 seconds

Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle (벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구)

  • Shim, Young-Sam;Kim, Duck-Jool;Choi, Gyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.

Experimental Study on NOx Reduction and CO Emission by Fuel Lean Reburning Process (연료 희박 재연소 과정에 의한 NOx 저감 및 CO 발생에 대한 실험적 연구)

  • Lee, Chang-Yeop;Kim, Hak-Young;Baek, Seung-Wook;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.216-223
    • /
    • 2008
  • Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on $NO_X/CO$ reduction in LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection location of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the fuel lean reburning system was adapted, it is important that the control of some factors such as initial equivalence ratio, reburn fuel fraction and temperature of reburn fuel injection region. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Non-Contact Pick-up System for Turning Large Flexible Thin Sheets (대형 유연박판 회전이송용 비접촉 파지시스템 설계)

  • Kim, Joon Hyun;Ahn, Sung Wook;Lee, Se Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.435-442
    • /
    • 2014
  • This paper describes an improved design model that can be used to configure a non-contact pneumatic device to turn a large sheet at the in-line system. For rotational moving in the conveyor system, the conventional method is to turn the system itself. The improved non-contact pick-up system mainly uses 8 pairs of L-shaped latches and 12 swirl type heads. It is positioned above the upward air flow table. This system performs the non-contact gripping and side-edge contact support in the vertical and rotational directions to hold the self-weight of a large flat sheet. A non-contact air head can exert a sufficient gripping ability at 4N lower than the standard working pressure. The side latches support 60% of the lifting force required. Through structural and flow analysis, the working conditions were simultaneously considered in accordance with the deflection and flatness of the glass.

The Characteristics of Mixing and Combustion in the Combustor with Turbulence Generator (난류발생기가 장착된 선회기를 이용한 연소기내의 혼합 및 연소 특성)

  • 류승협;서정무;박용국;이근선;문수연;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.83-93
    • /
    • 2001
  • A swirler with turbulence generator is designed and manufactured for generating many small-scale eddies in the combustor which contribute to enhancing mixing effect between fuel and air. The method results in not only the disadvantage of pressure loss but also the advantage of promoting combustion and reducing NOx. For the purpose of the study, four kinds of swirler with different turbulence generator area (0%, 3%, 7%, and 12% of reducing flow area) are designed to confirm the effect of mixing according the variation in the area of the turbulence generator. The mixing of combustor in the radial direction is significantly improved and the distributions of flames and temperature are well distributed throughout the cross section of a combustor as area of swirl generator is increased.

  • PDF

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

A Study on the Spray Characteristics of Swirl Injector for Use a HCCI Engine using Entropy Analysis and PIV Technique (엔트로피 해석과 PIV를 이용한 HCCI 엔진용 스월 인젝터의 분무 특성 해석에 관한 연구)

  • 안용흠;이창희;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • The objective of this study is to analyse the spray characteristics according to the injection duration under ambient pressure condition and to investigate the relationship between vorticity and entropy for controlling diffusion process that is the most important thing during the intake stroke injection process. Therefore, the spray velocity was obtained by using the PIV method that has been an useful optical diagnostics technology, and vorticity calculated from spray velocity component with vorticity algorithm. In addition, the homogeneous diffusion rate of spray was quantified by using the entropy analysis based on the Boltzmann's statistical thermodynamics. From these method, we found that as injection duration increases, spray velocity increases and the location of vortex is moved to the downstream of spray. In the same condition, as the entropy decrease, mean vorticity increases. This means that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation.

Theoretical Analysis on the Swirl Type Nozzle(III) -Effects of Forces on the Droplet Formation- (와권(渦券) 노즐의 이론분석(理論分析)(III) -힘이 입자형성(粒子形成)에 미치는 영향(影響)-)

  • Lee, S.W.;Sakai, Jun
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.196-206
    • /
    • 1989
  • 와권(渦券) 노즐에 작용(作用)되는 힘은 분두(噴頭)의 도구(導溝) 및 와실(渦室)의 기능(機能)에 의하여 축방향력(軸方向力)과 반경방향력(半徑方向力)으로 분류(分類)되고, 이 두 개의 힘은 미립화(微粒化)의 과정(過程)에 각각(各各)의 특성(特性)을 주고 있다. 반경방향(半徑方向)의 힘은 분두(噴頭)에서 분사(噴射)되는 입자(粒子)에 전단력(剪斷力)으로서 작용(作用)하지만 이 힘의 크기는 물방울의 직경(直徑) $100{mu}m$을 기준(基準)하여 2.4m/s의 속도(速度) 이내(以內)의 범위(範圍)이었으며, 그 속도범위(速度範圍)는 다음 유도된 식(式)으로 산출(算出)할 수 있었다. $$V_{ot}=(\frac{8g{\sigma}}{d{\gamma}})^{1/2}$$ 축방향력(軸方向力)은 아래 유도된 식(式)과 같이 분사액류(噴射液流)의 굴절각에 매우 민감하게 영향을 미치었고, 그 크기는 반경방향력(半徑方向力)에 비교(比較)하여 큰 값을 나타내었다. $$V_{\ell}={\sigma}[\frac{1}{2}{\rho}_{a}sin2{\theta}_d-4({\mu}+{\eta})\frac{\ell}{r_o}]^{-1}$$.

  • PDF