• Title/Summary/Keyword: Swelling technology

Search Result 718, Processing Time 0.027 seconds

Weatherproof-properties Evaluation of Castor Oil-impregnated Wood Using a Vacuum-pressure Method (감가압법으로 주입한 피마자유-처리 목재의 내후성 평가)

  • Ohkyung Kwon;Yeong Seo Choi;Daye Kim;Wonsil Choi;Young-kyu Lee;Kwon-min Kim;Joon weon, Choi;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.302-311
    • /
    • 2023
  • This study was conducted to evaluate the applicability of castor oil (CSO) as a natural wood preservative. CSO was treated into wood blocks prepared with domestic and imported wood species using a vacuum-pressure method, and then treatability, leachability and decay resistance of the CSO-treated wood blocks were examined. Although CSO was penetrated effectively into wood blocks of all wood species, the CSO-treatability was the highest in Western hemlock, followed by Japanese larch (LA), soft maple and Mongolian oak due to the difference of its anatomical structure. Except for LA, the more retained, the more leached during a saline water-immersing process for 48h. The use of ethanol added to reduce the viscosity of CSO affected negatively the treatability and leachability of wood blocks. Decay resistance, which was evaluated by the weight loss of wood blocks exposed against Fomitopsis palustris (FOP) and Trametes versicolor, of the CSO-treated/leached wood blocks was superior to that of control. Especially, most of wood blocks treated with preserving solution composed of only CSO (CSO-2) did not decayed and showed a very low weight loss against FOP. The decay resistance results from CSO retained in wood blocks after leaching. The retention of CSO could identify using the observation of X-ray microscope. Length of wood strips, which were treated with CSO-2 and then immersed in saline water for 2 weeks, hardly changed in all cutting directions. In addition, weight gain and length-swelling rate of the wood strips were extremely low compared to those of control. These results indicate that moisture resistance of the wood strips was improved by the CSO treatment. It is concluded that the treatment of CSO using a vacuum-pressure method provides the decay resistance and dimensional stability of wood, and thus CSO can be used as a natural wood preservative on various indoor and outdoor circumstances.

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF

Physicochemical Properties and Hot Air-Dried and Spray-Dried Powders Process of Sweet Potato and Steamed Sweet Potato (열풍건조 및 분무건조 공정을 이용한 생 고구마와 찐 고구마 분말제조 및 물리화학적 품질특성)

  • Gu, Yul-Ri;Chae, Ho-Yong;Hong, Joo-Heon
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • This study was conducted to examine the physicochemical properties and hot air-dried and spray-dried powders process of sweet potato and steamed sweet potato. The moisture and the total starch contents were 1.66~2.19% and 52.65~57.42%, respectively. The total starch contents increased during process steaming. The water absorption index of the spray-dried powders (0.97 and 2.03) was lower than that of the hot air-dried powders (2.12 and 4.71), and the water solubility index of the spray-dried powders (83.83 and 86.95%) was higher than that of the hot air-dried powders (68.40 and 81.21%). The particle size and outer topology of the spray-dried powders were 46.18 and $65.53{\mu}m$, and its shape was generally globular. In the DSC analysis of this study, the $T_o$ of the spray-dried powders (64.40 and $67.80^{\circ}C$), $T_p$ of the spray-dried powders (74.40 and $78.20^{\circ}C$), and $T_c$ of the spray-dried powders (81.10 and $81.60^{\circ}C$) was higher than that of the hot air-dried powders. The solubility contents of the spray-dried powders (68.21 and 80.73%) was lower than that of the hot air-dried powders, and the swelling power contents of the spray-dried powders (14.79 and 15.35%) was higher than that of the hot air-dried powders. The amylose contents of spray-dried powders (11.67 and 12.51%) was lower than that of the hot air-dried powders. The soluble dietary fiber contents of spray-dried powders (1.34 and 2.02%) was higher than that of the hot air-dried powders.

Effect of Amides as a Cryoprotectant on Quality of Frozen-thawed Sperm in Korean Jeju Black Bull (제주흑우 동결정액 제조 시 Amide 계열의 동결보호제가 동결 융해 후 정자의 성상에 미치는 영향)

  • Oh, Shin-Ae;Choi, Sun-Ho;Ko, Min-Hee;Kang, Tae-Young;Cho, Sang-Rae;Ko, Moon-Suck;Oh, Young-Mi;Cho, Won-Mo
    • Journal of Animal Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • The objective of this study was to examine the effect of amides as a cryoprotectant for semen cryopreservation in Korean Jeju Black Bull. The semen was cryopreserved with extenders containing 5% dimethyl acetamide (DMA), 5% dimethyl formamide (DMF), 5% methyl formamide (MF) or 7% glycerol. Post-thawed sperm were evaluated for sperm motility, viability, acrosome integrity and membrane integrity. Post-thawed sperm motility was significantly higher (p<0.05) in glycerol and DMF ($64.00%{\pm}9.62$ and $59.00%{\pm}5.48$, respectively) than DMA and MF ($50.00%{\pm}3.24$ and $44.00%{\pm}4.18$, respectively). Sperm viability wassignificantly higher (p<0.05) in glycerol and DMF ($58.25%{\pm}7.35$ and $53.05%{\pm}3.77$, respectively) than others. However, for sperm motility and viability, there were no differences among glycerol and DMF. Also, swelling sperm ratio by hypo-osmetic selling test (HOST) was significantly increased (p<0.05) in glycerol and DMF treatments ($45.12%{\pm}25.08$ and $44.95%{\pm}8.58$, respectively). The percentage of capacitated sperm assessed by CTC staining, F pattern was lower (p<0.05) in DMF than others. B pattern was increased (p<0.05) in DMA, DMF and MF when compared with glycerol. AR pattern ratio was decreased (p<0.05) in glycerol and DMF when compared with DMA and MF. These results suggested that amides performed better and could be used as a cryoprotectant for semen freezing of Korean Jeju Black Bull.

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

Effect of High Pressure Processing on Freshness of Meat Products (육류가공품의 고압처리가 신선도에 미치는 영향 평가)

  • Hwang, Seong-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.272-279
    • /
    • 2018
  • The high pressure processing (HPP) is a technology which can preserve the quality of foods, such as the fresh taste, incense, texture, vitamin content, and so on, by minimizing the heating process. It does so by applying an instantaneous and uniform pressure that is the same as the water pressure that is 60 km deep in the sea. HPP is a technology that can inhibit food poisoning and spoilage caused by microorganisms and is currently an actively studied area. In this study, we investigated the effects of a high pressure treatment (0, 4, 6 min) on sliced ham, which is a typical meat product, at 600 MP a were tested for their effect on freshness. Moisture contents varied from 48 to 69%, salinity varied from 1.07 to 1.11%, and the pH decreased from 6.4~6.5 to 6.1~5.15. However, there was no difference between the control and treatment groups. General bacteria stored at $20^{\circ}C$ after hyper-pressure treatment were found to have no significant microorganisms in all groups until 4 weeks. but exceeded $10^5$ in control group and HPP 6 min treatment group from 5 weeks, At week 7, it was found to exceed $10^6$. The results indicate it was not possible to ingest food in the 4-and 6 minute treatment groups. Coliform was not observed in all groups despite observing for a total of 7 weeks at $20^{\circ}C$ weight test. VBN, a method used to determine the protein freshness of meat, showed a VBN value of less than 1 mg% until the fourth week and a value of 1 to 2 mg% after 5 weeks. The TBA was used as an index of the degree of fat acidosis in the meat tissues. The results showed it was below 0.18 mgMA / kg until the end of 7 weeks; this value was within the range for fresh meat, and there was no difference in treatment group. In this experiment, deformation of the packaging material did not occur and no swelling occurred due to the generation of gas. It is believed that the basic preservation effect was achieved only by blocking with the air due to the close contact of the packaging material.

Effects of Storage Form and Period of Refrigerated Rice on Sensory Properties of Cooked Rice and on Physicochemical Properties of Milled and Cooked Rice (냉장 쌀의 저장 형태 및 기간에 따른 쌀밥의 관능적 특성)

  • Lee, Ju-Hyun;Kim, Sang-Sook;Suh, Dong-Soon;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.427-436
    • /
    • 2001
  • The effects of storage form (paddy and milled rice) and storage period (1, 2, and 3 years) of rice at low temperature $(4^{\circ}C)$ on physicochemical properties of milled and cooked rice and sensory characteristics of cooked rice were investigated. The proximate compositions except moisture content of rice decreased as the storage period increased. Water binding capacity, solubility and swelling power of rice flour decreased with the extended storage period. In the amylogram, the initial pasting temperature, paste viscosity and breakdown of paddy rice flour slurry decreased after 2 years of storage. Moisture content of cooked rice increased while the amount of water evaporated during cooking decreased. These trends were obvious with the longer storage period. Lightness and yellowness of cooked rice were greatly changed after 3 years of storage, regardless of storage form. Texture profile analysis of cooked rice by Texture Analyzer revealed that hardness, fracturability, gumminess were gradually increased while adhesiveness decreased as the storage period of rice increased. A trained panel found that color intensity, intactness of grains, rancid flavor, rice bran flavor, wet cardboard flavor, hardness and chewiness of cooked rice increased with the longer storage period. However, glossiness, transparency, plumpness, puffed corn flavor, dairy flavor, boiled egg white flavor, sweet taste, adhesiveness to lips, smoothness and inner moisture decreased with the extended storage period up to 3 years. Instrumental hardness was highly correlated with sensory hardness.

  • PDF

Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa (가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tai;Ahn, Soon-Cheol;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.534-540
    • /
    • 2007
  • In this study, waxy rice starch was chemically modified using phosphorous oxychloride ($POCl_3$, 0.002-0.008%). Then the physicochemical properties of resulting cross-linked waxy rice starches were investigated in order to reduce the steeping time of Yukwa (a Korean oil-puffed rice snack) processing. The swelling powers of the cross-linked waxy rice starch samples were higher than the native waxy rice starch at temperatures above $60^{\circ}C$, and their increases were proportional to the $POCl_3$, concentration. The solubility of the cross-linked waxy rice starch was lower (1.6-3.4%) than the native waxy rice starch (2.7-6.1%). However, the moisture sorption isotherm of the cross-linked waxy rice starch was not significantly different from the native waxy rice starch. The rapid visco analyze. (RVA) pasting temperatures $(65.4-67^{\circ}C)$ of the cross-linked waxy rice starch were lower than those of the native starch $(67^{\circ}C)$. The RVA peak viscosities (287-337 RVU) of the cross-linked waxy rice starch were higher than that of native starch (179 rapid visco units (RVU)), and increased with increasing $POCl_3$ concentration. For the differential scornning calorimeter thermal characteristics, although Tc shifted toward higher temperatures with cross-linking, the To, Tp, and amylopectiin melting enthalpy of the cross-linked waxy rice starch showed no differences compared to the native waxy rice starch. The X-ray diffraction patterns of both the native and cross-linked waxy rice starches showed typical A-type crystal patterns, suggesting that cross-linking mainly occurs in the amorphous regions of starch granules. Therefore, the cross-linking reaction did not change the crystalline region, but altered the amorphous region of the waxy rice starch molecules, resulting in changes of solubility and RVA pasting properties in the cross-linked waxy rice starch. In summary, since cross-linked waxy rice starch has a high puffing efficiency and no browning reaction, it may be applicable for Yukwa processing without a long steeping process.

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

A Study on the Physcial and Mechanical Properties of Hot - Compressed Wood (열압처리(熱壓處理) 목재(木材)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究))

  • Park, Young-Kyu;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-58
    • /
    • 1987
  • This study was carried out to improve the physical and mechanical properties of Pupulus alba $\times$ glandulosa treated by the heat and compression. The results obtained were as follows. 1. The specific gravity of the wood was conspicuously increased by the lincreasing of pressing level. 2. The shrinkage of the wood was increased. by the increasing of pressing level. The radial shrinkage was 6.41-8.81%, the tangential shrinkage was 8.98-19.81 %, and the longitudinal shrinkage was 1.46-1.91 %. Comparing to the untreated stock, the rate of increase was 48.7-104.4% in radial direction. 1.7-124.4% in tangential direction and 60.4-109.9% in longitudinal direction, respectively. 3. The rate absorption of 30% compressed stock was Similar to that of untreated stock. but the rate of absorption of 40 % or more compressed stock was increased highly. 4. The thickness swelling of the wood was not changed in radial direction at pressing level, but was conspicuously increased in tangential direction under the pressing level of 40% and 50%. 5. The heat and compression treatment affected on the mechanical properties of the wood. The longitudinal compressive strength was increased under the pressing level of up to 40%, but was decreased under the pressing level of 50%. The bending strength was not changed under the compression percentage of up to 30%, but was decreased under the pressing level of 30% or more. And, the absorbed energy in impact bending was increased to 128% under the pressing level of up to 30%, but was decreased under the pressing level of 30% or more. Conclusionly, the mechanical properties of the wood was improved by the heat and compression treatment, but the strength of the wood was decreased under the pressing level of a certain level or more(in this study, pressing level of 30% or more). This was because of the wood deterioration due to the deformation(shrinkage, crack, failure) of wood tissues induced by the heat and compression treatment, the heat analysis of wood components induced by the heating, and the drop of the degree of polymerization.

  • PDF