• Title/Summary/Keyword: Sweep Sinusoidal Vibration

Search Result 6, Processing Time 0.023 seconds

Maxima Response Spectrum for each Mechnical Vibration and its Application (기계적 진동에 대한 MRS 및 MRS의 응용)

  • 김재하;우호길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.234-245
    • /
    • 2001
  • This paper considers the Maximum Pesponse Spectrum for the random vibration, sinusoidal vibration, linear sweep vibration. The random vibration quality levels and the sinusoidal vibration quality level are compared using MRS. And the severity between the vibration test specification and real environments using Maximum Response Spectrum are also compared using it.

  • PDF

Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration (Solid-state drive 강제진동시 dummy solder ball 효과에 의한 피로수명 예측)

  • Lee, Juyub;Jang, Gunhee;Jang, Jinwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.978-983
    • /
    • 2014
  • This research proposes a method to estimate the fatigue life of solid-state drive(SSD) due to the effect of dummy solder ball under forced vibration. Mechanical jig is developed to describe the SSD in laptop computer. The jig with SSD is mounted on a shaker, and excited by a sinusoidal sweep vibration within the narrow frequency band around the first resonant frequency until the SSD fails. A finite element model of SSD is also developed to simulate the forced vibration. It shows that the solder joints at the corners of controller package are most vulnerable components and that placing dummy solder balls at those area is effective method to increase fatigue life of SSD.

  • PDF

Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration (SSD 강제진동 시 더미 솔더 볼 효과에 의한 피로수명 예측)

  • Lee, Juyub;Jang, Gunhee;Jang, Jinwoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2015
  • This research proposes a method to estimate the fatigue life of SSD(solid-state drive) due to the effect of dummy solder ball under forced vibration. A finite element model of the SSD was developed to simulate the forced vibration and a modal testing was performed to verify the developed finite element model. Fatigue life of the SSD under vibration was experimentally determined according to JEDEC standard in which the SSD was excited by a sinusoidal sweep vibration within the narrow frequency band around the first natural frequency until the SSD fails. Basquin's equation was introduced to estimate the fatigue life of the SSD due to the effect of dummy solder balls. It shows that the dummy solder balls are effective elements of the SSD to increase the fatigue life of an SSD by increasing 700 times of the fatigue life of the given SSD.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

Analysis for Vibration Characteristics of the Watermelon for Optimum Packaging Design in Domestic Distribution (국내 유통 수박의 적정 포장설계를 위한 진동특성 분석)

  • Jung, Hyun-Mo;Kim, Man-Soo;Kim, Ghi-Seok;Cho, Byeong-Kwan;Kim, Dae-Yong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.2
    • /
    • pp.97-102
    • /
    • 2006
  • Shock and vibration inputs are transmitted from the transporting vehicle through the packaging to the fruit. The vibration causes sustained bouncing of fruits against each other and the container wall. The steady state vibration input may cause serous fruit injury, and the damage is particularly severe if the fruits are bounced at its resonance frequency. The determination of the resonance frequencies of the fruits and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruits, and to understand the complex interaction between the components of the fruits when they relate to expected transportation vibration inputs. To analyze the vibration properties of the watermelon for optimum packaging design during transportation, sinusoidal sweep vibration tests were carried out. The resonance frequency of the watermelon ranged from 19 to 32 Hz and the amplitude at resonance was between 1.6 and 2.9 G. The resonance frequency and amplitude at resonance frequency band of the watermelon decreased with the increase of the sample mass. The multiple nonlinear regression equation for predicting the resonance frequency of the watermelon were developed using the independent variables such as mass, input acceleration and sphericity.

  • PDF