• Title/Summary/Keyword: Swarm intelligence algorithms

Search Result 40, Processing Time 0.021 seconds

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory (요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계)

  • Lee, Joonwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

Recent Trends in Multi-Agent Technology and Communication Optimization Research for Swarm Flight of Drones (드론 군집 비행을 위한 다중 에이전트 최신 기술 분석 및 통신 최적화 기술 연구)

  • Kim Eunsu;Jang Yeonju;Bang Jongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.71-84
    • /
    • 2024
  • Artificial intelligence can be cited as a key linkage technology for expanding drones' application fields, and drones combined with artificial intelligence are expected to improve drones' operational capabilities based on algorithms that can solve complex tasks through learning. The purpose of this study is to analyze various latest research cases that apply deep reinforcement learning to drones to solve limitations for performing swarm flight and to propose a new research direction that applies them to multi-agent communication optimization technology. The process of the research is to investigate and analyze the methods for efficient operation of control and communication technologies required for swarm flight to be successful, and to apply algorithms that have the advantage of exchanging richer feedback between agents and having less learning than conventional methods when learning deep reinforcement learning algorithms. It is expected that the efficiency and performance of learning communication protocols optimized for swarm flight will be improved, which will increase the efficiency of mission performance when exploring or scouting large areas through swarm flight in the future.

The Development of Artificial Intelligence-Enabled Combat Swarm Drones in the Future Intelligent Battlefield (지능화 전장에서 인공지능 기반 공격용 군집드론 운용 방안)

  • Hee Chae;Kyung Suk Lee;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • The importance of combat drones has been highlighted through the recent outbreak of the Russia-Ukraine war. The combat drones play a significant role as a a game changer that alters the conventional wisdom of traditional warfare. Many pundits expect the role of combat swarm drones would be more crucial in the future warfare. In this regard, this paper aims to analyze the development of artificial intelligence-enabled combat swarm drones. To transform the human-operated swarm drones into fully autonomous weaponry system our suggestions are as follows. Developments of (1) AI algorithms for optimized swarm drone operations, (2) decentralized command and control system, (3) inter-drones' mission analysis and allocation technology, (4) enhanced drone communication security and (5) set up of ethical guideline for the autonomous system. Specifically, we suggest the development of AI algorithms for drone collision avoidance and moving target attacks. Also, in order to adjust rapidly changing military environment, decentralized command and control system and mission analysis allocation technology are necessary. Lastly, cutting-edging secure communication technology and concrete ethical guidelines are essential for future AI-enabled combat swarm drones.

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

An Improvement of Particle Swarm Optimization with A Neighborhood Search Algorithm

  • Yano, Fumihiko;Shohdohji, Tsutomu;Toyoda, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • J. Kennedy and R. Eberhart first introduced the concept called as Particle Swarm Optimization (PSO). They applied it to optimize continuous nonlinear functions and demonstrated the effectiveness of the algorithm. Since then a considerable number of researchers have attempted to apply this concept to a variety of optimization problems and obtained reasonable results. In PSO, individuals communicate and exchange simple information with each other. The information among individuals is communicated in the swarm and the information between individuals and their swarm is also shared. Finally, the swarm approaches the optimal behavior. It is reported that reasonable approximate solutions of various types of test functions are obtained by employing PSO. However, if more precise solutions are required, additional algorithms and/or hybrid algorithms would be necessary. For example, the heading vector of the swarm can be slightly adjusted under some conditions. In this paper, we propose a hybrid algorithm to obtain more precise solutions. In the algorithm, when a better solution in the swarm is found, the neighborhood of a certain distance from the solution is searched. Then, the algorithm returns to the original PSO search. By this hybrid method, we can obtain considerably better solutions in less iterations than by the standard PSO method.

Optimum design of steel space structures using social spider optimization algorithm with spider jump technique

  • Aydogdu, Ibrahim;Efe, Perihan;Yetkin, Metin;Akin, Alper
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.259-272
    • /
    • 2017
  • In this study, recently developed swarm intelligence algorithm called Social Spider Optimization (SSO) approach and its enhanced version of SSO algorithm with spider jump techniques is used to develop a structural optimization technique for steel space structures. The improved version of SSO uses adaptive randomness probability in generating new solutions. The objective function of the design optimization problem is taken as the weight of a steel space structure. Constraints' functions are implemented from American Institute of Steel Construction-Load Resistance factor design (AISC-LRFD) and Ad Hoc Committee report and practice which cover strength, serviceability and geometric requirements. Three steel space structures are optimized using both standard SSO and SSO with spider jump (SSO_SJ) algorithms and the results are compared with those available in the literature in order to investigate the performance of the proposed algorithms.

Multi-Agent Reinforcement Learning based Swarm Drone using QPLEX and PER

  • Jin-Ho Ahn;Byung-In Choi;Tae-Young Lee;Hae-Moon Kim;Hyun-Hak Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.79-88
    • /
    • 2024
  • With the advancement of unmanned aerial vehicle technology, swarm drones are increasingly being deployed across various domains, including disaster response and military operations, where their effectiveness is particularly pronounced. These swarm drones leverage real-time data sharing and decision-making capabilities to execute tactical missions, making collaborative behavior essential in complex battlefield environments. However, traditional rule-based behavior mechanisms face limitations as environmental complexity escalates. This paper explores the potential of applying multi-agent reinforcement learning (MARL) to swarm drone models and proposes strategies to enhance their mission success rates. By utilizing QPLEX and Prioritized Experience Replay (PER), we present methods aimed at improving learning efficiency. Validation through the SMACv2 simulator reveals that the proposed approach achieves faster learning convergence and higher mission success rates compared to existing MARL algorithms.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.