• Title/Summary/Keyword: Swarm Agents

Search Result 24, Processing Time 0.016 seconds

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Development of a Machining System Adapted Autonomously to Disturbances (장애 자율 대응 가공 시스템 개발)

  • Park, Hong-Seok;Park, Jin-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.373-379
    • /
    • 2012
  • Disruptions in manufacturing systems caused by system changes and disturbances such as the tool wear, machine breakdown, malfunction of transporter, and so on, reduce the productivity and the increase of downtime and manufacturing cost. In order to cope with these challenges, a new method to build an intelligent manufacturing system with biological principles, namely an ant colony inspired manufacturing system, is presented. In the developed system, the manufacturing system is considered as a swarm of cognitive agents where work-pieces, machines and transporters are controlled by the corresponding cognitive agent. The system reacts to disturbances autonomously based on the algorithm of each autonomous entity or the cooperation with them. To develop the ant colony inspired manufacturing system, the disturbances happened in the machining shop of a transmission case were analyzed to classify them and to find out the corresponding management methods. The system architecture with the autonomous characteristics was generated with the cognitive agent and the ant colony technology. A test bed was implemented to prove the functionality of the developed system.

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.