• Title/Summary/Keyword: Sustainable utilization

Search Result 386, Processing Time 0.03 seconds

Using Tower Flux Data to Assess the Impact of Land Use and Land Cover Change on Carbon Exchange in Heterogeneous Haenam Cropland (비균질한 해남 농경지의 탄소교환에 미치는 토지사용 및 피복변화의 영향에 대한 미기상학 자료의 활용에 관하여)

  • Indrawati, Yohana Maria;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • Land use and land cover change (LULCC) due to human activities directly affects natural systems and contributes to changes in carbon exchange and climate through a range of feedbacks. How land use and land cover changes affect carbon exchanges can be assessed using multiyear measurement data from micrometeorological flux towers. The objective of the research is to assess the impact of land use and land cover change on carbon exchange in a heterogeneous cropland area. The heterogeneous cropland area in Haenam, South Korea is also subjected to a land conversion due to rural development. Therefore, the impact of the change in land utilization in this area on carbon exchange should be assessed to monitor the cycle of energy, water, and carbon dioxide between this key agricultural ecosystem and the atmosphere. We are currently conducting the research based on 10 years flux measurement data from Haenam Koflux site and examining the LULCC patterns in the same temporal scale to evaluate whether the LULCC in the surrounding site and the resulting heterogeneity (or diversity) have a significant impact on carbon exchange. Haenam cropland is located near the southwestern coast of the Korean Peninsula with land cover types consisting of scattered rice paddies and various croplands (seasonally cultivated crops). The LULCC will be identified and quantified using remote sensing satellite data and then analyzing the relationships between LULCC and flux footprint of $CO_2$ from tower flux measurement. We plan to calculate annual flux footprint climatology map from 2003 to 2012 from the 10 years flux observation database. Eventually, these results will be used to quantify how the system's effective performance and reserve capacity contribute to moving the system towards more sustainable configuration. Broader significance of this research is to understand the co-evolution of the Haenam agricultural ecosystem and its societal counterpart which are assumed to be self-organizing hierarchical open systems.

  • PDF

Measuring Environmental Efficiency of International Airports: DEA and DDF Approach (세계 주요 공항의 환경 효율성 분석에 관한 연구)

  • Lee, Seung-Eun;Choi, Jeong-Won;Kim, Sung-Ryong;Seo, Young-Joon
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.51-70
    • /
    • 2021
  • This study measured the environmental efficiency of 21 international airports based on sustainability reports issued by each airport for 2018. As many sectors in the industry paid attention to social and environmental responsibilities, airport operators comprise one of the leading sectors that streamlined their facilities to become increasingly sustainable and environmental. Nevertheless, studies on the environmental operations of airports are insufficient compared with studies on economic or operational efficiency. Therefore, the current study aims to determine any possible improvement in the environmental inefficiency of airports with the utilization of directional distance function (DDF) and to examine operational efficiency with the application of the data envelopment analysis (DEA). The majority of airports have operated their facilities efficiently, but not all have effectively managed pollutants generated by airports. Furthermore, many airports can still potentially reduce CO2 and water consumption. This study suggests several implementable environmental improvements to the aviation sector. Moreover, other industrial sectors may use the research as a benchmark for enhancing environmental efficiency.

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.

A Study on Health Behaviors of the Young Adults and the Elderly with Hypertension: A Secondary Analysis of the 2018 Korea Health Panel Data (고혈압이 있는 청장년층과 노년층의 건강행위 분석: 2018년 한국의료패널조사 자료활용)

  • Keum Sook, Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.141-148
    • /
    • 2022
  • The purpose of this study was to investigate the health behavior performance between the young adults and the elderly with hypertension. The research data were analyzed using 2018 Korea Medical Panel data. The subjects of this study were 3,117 persons without disabilities or activity disorders among those diagnosed with hypertension. As a result of the study, first, it was found that the medical utilization rate and drug adherence were high overall. Second, the average body mass index(BMI) and obesity over 25 kg/m2 were found to be higher among the young adults. Third, smoking and drinking were higher in young adults in terms of experience and smoking and alcohol consumption. Fifth, the subjective health status was found to be perceived more positively by the young adults. Based on the results of this study, it is necessary to raise awareness of the need for customized health care from a young age and to develop sustainable and effective programs.

Water level forecasting for extended lead times using preprocessed data with variational mode decomposition: A case study in Bangladesh

  • Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.179-179
    • /
    • 2023
  • This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.

  • PDF

Topical Questions of Grasslandfarming from the German point of View (독일 초지농업의 현안문제들)

  • Neff, R.
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 2002.09b
    • /
    • pp.103-127
    • /
    • 2002
  • The main problem of the forage-based livestock farming in Germany at the moment is the high yielding cow requiring high energy concentration in feed which can be obtained lot easier with corn and grain than with grass. Therefore milk production tends out of the grassland region and into the forage crop region. Nutrient surplus due to concentrates in milk production in future probably will be limited by the government. The problem can only be solved by using best swards and optimal silage techniques as well as optimisation of manure utilization. Most important steps of sustainable forage production are care of grassland as well as regular resowing, especially of silage meadows. About 40% of Hessian grassland is managed in agri-environmental problems to keep it in use and to protect the natural resources. Selective measures are realized, to solve special problmes of nature and landscape conservation.

  • PDF

Current Status of Waste Heat Recovery System in Cement Industry (시멘트 산업 폐열 회수 현황)

  • Young-Jin Kim;Jun-Hyung Seo;Yang-Soo Kim;Seok-Je Kwon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.3-17
    • /
    • 2022
  • The cement industry, which is an energy-intensive and high carbon dioxide emission industry, requires strategy for carbon neutrality and sustainable development. Most domestic cement companies are generating electricity by waste heat recovery system to improve energy efficiency during cement processes; however, few studies exist on recycling of energy related to this. Certain countries with high cement production researched on modifying the conventional waste heat recovery system to maximize waste heat recovery using various methods such as applying the Rankine cycle depending on the temperature, comparing working fluids, applying two or more Rankine cycles, and combining with other industries. In this study, we reviewed the research direction for energy efficiency improvement by summarizing waste heat recovery and utilization methods in the domestic and overseas cement industries.

Effects of the crude protein concentration on the growth performance and blood parameters in growing Hanwoo steers (Bos taurus coreanae)

  • Seoyoung, Jeon;Hyunjin, Cho;Hamin, Kang;Kyewon, Kang;Mingyung, Lee;Enkyu, Park;Seokman, Hong;Seongwon, Seo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.975-985
    • /
    • 2021
  • The sufficient amount of protein supply is crucial for improving the growth performance of growing beef cattle. In addition, due to the improvement in the genetic potential of the carcass weight of Hanwoo steers, dietary protein requirements may be increased during the rapid growth period. Accordingly, the dietary crude protein (CP) level in growing Hanwoo steers has been increasing in the field. However, little scientific evidence is available in relation to this. Therefore, this study was conducted to test whether a higher dietary CP level than convention would improve the growth performance and body metabolism in growing Hanwoo steers. Fifty growing Hanwoo steers were randomly divided into two groups and fed either a commercial diet (CON) or a higher CP (HCP) concentrate mix, provided with a similar level of dietary energy. Tall fescue hay was provided ad libitum. The dietary CP level did not affect growth performance and blood metabolite. Nitrogen intake, predicted nitrogen excretion, and retained nitrogen were higher in the HCP group than in the CON group (p < 0.01). Although there was no difference in the nitrogen utilization efficiency, the growth efficiency per retained nitrogen decreased in the HCP group (p = 0.02). A higher dietary CP level may increase nitrogen retention in growing Hanwoo steers without improving growth performance, which leads to reduced growth efficiency per retained nitrogen. Furthermore, considering the high price of feed protein and increased nitrogen excretion to the environment, a further increase in the protein level may not be sustainable.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Design and Evaluation of Integrated Service Platform for S&T Knowledge Infrastructure (과학기술지식인프라 통합서비스 플랫폼 설계 및 평가)

  • Jung, Hanmin;Park, Jung Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.577-579
    • /
    • 2022
  • It is not easy to achieve the essential goal of knowledge management, which is to strengthen individual competence and organizational competitiveness, only by collecting distributed knowledge in the centralized knowledge repository conducted so far. In order to establish a sustainable knowledge ecosystem, we must expand knowledge production through exchange and cooperation, not independent knowledge production. Through this, producing meaningful and high-value knowledge resources becomes possible. Therefore, this study aims to design an integrated service platform that stores science and technology knowledge resources and reproduces and evolves knowledge through opening, sharing, and utilization. In order to evaluate its excellence, Five experts evaluated the designed platform on detailed items classified into planning adequacy, platform effectiveness, platform efficiency, and roadmap adequacy. The evaluation score averaged 95.56 points for the above four evaluation items.

  • PDF