• Title/Summary/Keyword: Sustainable technologies

Search Result 455, Processing Time 0.036 seconds

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

A Study on the Development Task and Element for Creating Sustainable City Street Environment (지속가능한 도시 가로 환경 조성을 위한 개발 과제 및 개발요소에 관한 연구)

  • Park, Sung-Jun;Lee, Hyun-Soo;Lim, Ho-Kyun
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2012
  • The purpose of this study is to suggest a strategy of creating sustainable city's streets by extracting a elements related the task related with society, economic, and environment. The method of this study is as follows. First step, we extract main task for developing sustainable settlements through studying literature review. Second step, based on the task for sustainable settlements, we generate various elements for developing sustainable street environments. Third step, we carry out a survey targeting experts related to field of urban environment. Fourth step, we analyze their priority about developing elements and the difference between groups. Last step, through correlation analysis between three task and elements for developing sustainable streets, we discuss the specific application around developing elements. The result of this study is as follows. Firstly, from a social point of view, the task related to connecting of historical and cultural characteristic is the most important thing. In a environmental view, it illustrates that application of technologies based on IT is more important than use of sustainable land. In a economic paint of view, it presents that the elements of city security & disasters are important.

  • PDF

The Role of Residents for the Sustainable Ecopolis and Ecovillage (지속가능한 생태도시 및 생태마을에서의 거주자의 역할)

  • 곽인숙
    • Journal of the Korean Home Economics Association
    • /
    • v.39 no.6
    • /
    • pp.109-122
    • /
    • 2001
  • This study was performed to identify the roles of residents for the environmentally sound and sustainable development, taco-polis(kologisches Bauen), eco-village and Symbiotic Housing. These buildings will achieve energy efficiency through design strategies such as passive solar heating system, natural cooling and day lighting. Their infrastructure will feature parking on the periphery, extensive pedestrian paths, outdoor ground lights that preserve stellar visibility, and environmentally sensitive technologies such as low writer use fixtures. And they will restore biodiversity while protecting the wildlife, wetlands, forests, soil, air and water. Their houses wile be designed to support home-based occupations, offering high-speed Internet access and other options to promote a localized, sustainable economy. To support and encourage the evolution of sustainable settlements, it is necessary to prepare constructing the physical facilities and the social functions relating with residents. The roles of residents are important to provide a high Quality lifestyle and to integrate a supportive social environment with a low-impact way of life. This study concluded the four main roles of residents for the sustainable of Eco-polis and Ecovillage. 1. Residents assist transition towards a sustainable society as eco-conscious consumers in the planning stage. 2. Residents live in a ecological way for the sustainable ecovillage. 3. Residents exchange information and education for increasing the community glue as a communication network. 4. Residents support and transmit their cultural vitality and tradition for the next generation. So, users are expected to encourage resident's participation in the planning, design, ongoing management and maintenance of the sustainable ecovillage.

  • PDF

Advanced Liquid Crystal Materials for PS-VA mode

  • Lee, Seung-Eun;Song, Dong-Mee;Lee, Eun-Kyu;Bernatz, Georg;Goetz, Achim;Tarumi, Kazuaki;Taugerbeck, Andreas
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.156-158
    • /
    • 2009
  • New liquid crystal (LC) host mixtures and reactive mesogens (RMs) designed for the Polymer Sustainable Vertically Aligned (PS-VA) mode have been developed. The novel combination of LC host mixture with RMs enables to show superior LC display performance with high reliability and to contribute for the robust LC panel production process.

  • PDF

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Eliminating Waste : Strategies for Sustainable Manure Management - Review -

  • Richard, T.L.;Choi, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1162-1169
    • /
    • 1999
  • Modern livestock production facilities face both challenges and opportunities with respect to sustainable manure management practices. Nutrient recycling is constrained by the size of modern livestock operations, the low nutrient density of liquid manures, and the spatial and temporal variability of manure nutrient concentrations. These constraints can and must be addressed or farmers will be increasingly drawn to nutrient wasting strategies such as anaerobic lagoons, wetlands, and other systems designed to treat and discharge nutrients to the environment. Intentional discharge of nutrients is difficult to justify in a sustainable agricultural production system, since replacing those nutrients through chemical fertilization requires considerable expenditure of energy. In contrast, there are several currently viable technologies which provide the homogenization and stabilization needed to successfully compete against chemical fertilizers, including composting, pelletization, and anaerobic digestion. Some of these technologies, particularly anaerobic digestion and composting, also open up increased opportunities to market the energy and nutrients in manure to non-agricultural uses. Future advances in biotechnology are likely to demonstrate additional options to transform manure into fuels, chemicals, and other non-agricultural products.

Innovations for Sustainability: A Case of Mainstreaming Energy Access in Rural India

  • Patil, Balachandra
    • Asian Journal of Innovation and Policy
    • /
    • v.4 no.2
    • /
    • pp.154-177
    • /
    • 2015
  • India faces a formidable challenge in ensuring security of access to modern energy carriers to majority of its population. The fossil-fuel dominated centralized energy system has proved to be ineffective in creating sustainable access to energy, which suggests need for a radical and innovative approach. We present such an approach. First, the need for innovations given the implications of lack of energy access on sustainable development is assessed. Next, possible innovations with respect to technologies, policies, institutions, markets, financial instruments and business models are discussed. Finally, an economic and financial feasibility of implementing such innovations are analyzed. The results indicate that such a proposal needs an investment of US$ 26.2 billion over a period of 20 years for a GHG mitigation potential of 213Tg $CO_{2e}$. The proposition is profitable for the enterprises with IRRs in the range of 39%-66%. The households will get lifeline access to electricity and gas for cooking at an affordable monthly cost of about US$ 5.7.

Strategy for the Successful Bio-venture in GMO Environment (성공적인 바이오벤처의 경영전략)

  • Park, Han-Oh
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • Bio-venture companies have undertaken harsh environment after 2000 bubble corruption. It is unlike to be changed in the near future. The business model of near-term cash flow, financial stability and survival is a key issue to be discussed. The company shall be rearranged to achieve fast recovery from investment and have to show clear and quantitative business model to the investors. Nevertheless, bio-venture should not drop long-term value creation by sacrificing the possibility of emerging technologies. Prior to clarifing agro-bioventure business model, GMO strategy should have broad supports from stakeholders. The interests and worries of stakeholders are discussed and SWOT is analyzed. For sustainable economy of future, new technology continuously should be invested to fit ROI model of genomics-based GMO developments. Hybrid of products ${\varepsilon}$ technologies may be one of the favorites in this stormy season.

  • PDF

Sustainable Roughage Production in Korea - Review -

  • Hur, S.N.;Lim, K.B.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.445-448
    • /
    • 1999
  • Beef and dairy cattle are the primary ruminant livestock in Korea, but there is a serious shortage of both fresh and dry forages. Small areas of forage crops or pastures, unfavorable soil and climatic conditions, high costs for pasture production, low establishment and management technologies, etc. are the main factors limiting roughage production in Korea. To meet the roughage demand of cattle several suggestions are presented. About 845,000 ha of hilly area could be developed for pastureland. Almost the same area of paddy field, and more than 200,000 ha of reclaimed land could be used for pasture production. If all the potential area is developed for pastureland, the area could be extended to 10 times more than is presently used for pasture crops and pastureland. Productivity would be increased by developing new technologies of establishment and management. Silvo-pastoral systems should be introduced to Korea.