• Title/Summary/Keyword: Sustainable technologies

Search Result 455, Processing Time 0.027 seconds

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Strategy for the Development of Innovative Clean Technology in Korea (국내 미래청정기술 개발을 위한 전략)

  • Kim, Young Dae;Sim, Sang Jun;Lee, Joong Ki;Choi, Guang Jin;Park, Tae-Jin;Cho, Young Sang
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.9-26
    • /
    • 1997
  • The recent movement toward the better environment urges the shift of pollution prevention strategy from traditional "command/control" and "end-of-pipe" technologies to clean technologies. Development of Clean Technology, which makes products without creating pollutions, is a way to solve Environmental problems fundamentally. The main objective of this study is to define the long-term strategy to develope "Innovative Clean Technology". "Innovative Clean Technology" is an active way of solving the environmental problems arising from industrial activities. It aims to find ways either to make products without creating pollution, to produce environmentally benign end-products, or else to recover and re-use the materials which have hitherto considered waste.

  • PDF

Development of Impact Table and optimum combination dedication module for green-remodeling advance business value assessment

  • Choi, Jun-Woo;Kim, Gyoung-Rok;Ko, Jung-Lim;Shin, Jee-Woong;Lee, Keon-Ho
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: In case of existing building, A lot of attempts are being made like changing thermal system or using high efficiency products to decrease energy load and increase energy efficiency. However, (1) Absence of systemed database of green-remodeling technology and products. (2) Absence of comparative analysis system and qualitative/quantitative evaluation method of energy performance and energy reduction cost. (3) Existing remodeling was very hard to access for non-experts. So, in this paper, the authors developed data base for green-remodeling(Impact Table A, Impact Table B) and optimum combination dedication tool for user convenience. Accordingly, purpose of this paper validate usefulness of Impact Table and optimum alternative dedication tool. Method: For validate the usefulness of Impact Table and optimum combination dedication tool, the authors selected five test model office buildings. Next, through research investigation, the authors diagnosed the present state of buildings. In base of diagnosis results, select technologies for remodeling by qualitative comparison (Impact Table A). Next, evaluate quantitative price and performance technologies that selected in Impact Table A (Impact Table B). Lastly, through final evaluation of Impact Taba A and Impact Table B, determine the direction of the green-remodeling. Result: Impact Table and optimum combination dedication tool can use relative indicator for green-remodeling, especially through ROI by detail field.

A Study on the Role of Input Stabilization for Successful Settle down of TRM in Production Process : A Case of Display Industry (생산공정에서 TRM의 성공적 정착을 위한 Input 안정화의 역할에 관한 연구 : 디스플레이 산업 중심으로)

  • Cho, Myong Ho;Cho, Jin Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.140-152
    • /
    • 2016
  • It is very important for the competitiveness and sustainable management of enterprises that the rapid changes in the managerial environments quickly and accurately are responded. For example, the large-scale investment accompanied by bad alternatives in accordance with misunderstanding of the managerial environments yields the huge cost and effort to modify and improve. In firm management, the quality of products and the productivity are influenced by changes of the endogenous factors yielded in manufacturing process and the exogenous factors as market, etc. These changes include not only changes in 4M (man, machine, material, method) but also those in the market, competitors, and technologies in the process of commodification, i.e., first, such disturbances make dispersion of the process big and odd. By Shewhart chart it can be checked that the process monitored is control-in or out. Business administration executes activities for input stabilization by monitoring changes in 4Ms, comparing with the standards, and taking measures for any abnormality. Second, TRM (technology road map) is to prospect product deployment and technological trend by predicting technologies in the competitive environment as the market, and to suggest the future directions of business. So, TRM must be modified and improved according to DR (design review) stages and changes in mass-production like input material change. Therefore, a role of TRM in input stabilization for reducing cost and man-hour is important. This study purposed to suggest that the environment changes are classified into endogenous factors and exogenous factors in production process, and then, quality and productivity should be stabilized efficiently through connection between TRM and input stabilization, and to prove that it is more effective for the display industry to connect TRM with input stabilization rather than to use TRM separately.

Low Carbon.Green Growth Paradigm for Fisheries Sector (수산부문 저탄소.녹색성장 패러다임)

  • Park, Seong-Kwae;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.97-110
    • /
    • 2009
  • Two of the most important topics of the 21st century are ensuring harmony between man and his environment and the emerging long-tail economy in which niche markets are becoming increasingly more important. Since the Industrial Revolution in 17th century, human beings have increasingly exploited the world's natural capital, such as the natural environment and its ecosystems. Now the world is facing limits to sustainable economic growth because of limits to this natural capital. Thus, most countries are beginning to adopt a new development paradigm, the so-called"Green Development Paradigm" which pursues environmental conservation in parallel with economic growth. Recently, the Korean government announced an ambitious national policy of Low Carbon & Green Growth for the next six decades. This is an important step that transforms the existing national policy into a new future-oriented one. The fisheries sector in particular has great potential for making a substantial contribution to this national policy initiative. For example, the ocean itself with its sea plants and phytoplankton has an enormous capacity for fixing carbon, and its vast areas of tidal flats have a tremendous potential for cleaning up pollutants from both the sea and the land. Furthermore, the fishing industry has great potential for the development of fuel-saving biodegradable technologies, and a long-tail economy based on digital technologies can do much to promote the production and consumption of green goods and services derived from the oceans and the fisheries. In order for this potential to be realized, the fisheries authority needs to develop a new green-growth strategy that is practical and widely supported by fishing communities and the markets, taking into account the need for greenhouse gas reduction, conservation of the ocean environment and ecosystems, an improved system for seafood safety, the establishment of strengthened MCS (monitoring control surveillance) system, and the development of coastal ecotourism. In addition, fisheries green policies need to be implemented through a well-organized system of government aids, regulations and compensation, and spontaneous (voluntary) orders in fishing communities should be promoted to encourage far more responsible fisheries.

ADVANCED SFR DESIGN CONCEPTS AND R&D ACTIVITIES

  • Hahn, Do-Hee;Chang, Jin-Wook;Kim, Young-In;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Ha, Kwi-Seok;Kim, Byung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.427-446
    • /
    • 2009
  • In order to meet the increasing demand for electricity, Korea has to rely on nuclear energy due to its poor natural resources. In order for nuclear energy to be expanded in its utilization, issues with uranium supply and waste management issues have to be addressed. Fast reactor system is one of the most promising options for electricity generation with its efficient utilization of uranium resources and reduction of radioactive waste, thus contributing to sustainable development. The Korea Atomic Energy Research Institute (KAERI) has been performing R&Ds on Sodium-cooled Fast Reactors (SFRs) under the national nuclear R&D program. Based on the experiences gained from the development of KALIMER conceptual designs of a pool-type U-TRU-10%Zr metal fuel loaded reactor, KAERI is currently developing Advanced SFR design concepts that can better meet the Generation IV technology goals. This also includes developing, Advanced SFR technologies necessary for its commercialization and basic key technologies, aiming at the conceptual design of an Advanced SFR by 2011. KAERI is making R&D efforts to develop advanced design concepts including a passive decay heat removal system and a supercritical $CO_2$ Brayton cycle energy conversion system, as well as developing design methodologies, computational tools, and sodium technology. The long-term Advanced SFR development plan will be carried out toward the construction of an Advanced SFR demonstration plant by 2028.

The Impacts of Project Governance, Agency Conflicts on the Project Success : From the Perspective of Agency Theory (프로젝트 거버넌스가 대리인 갈등 및 프로젝트 성공에 미치는 영향 : 대리인 이론 관점)

  • Jeong, Eun-Joo;Kim, Bo-Ram;Jeong, Seung-Ryul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.11-20
    • /
    • 2018
  • Recently companies have increased the new projects to improve and innovate the business process in order to adopt the advanced technologies such as IoT (Internet of Things), Big Data Analysis, Cloud Computing, mobile and artificial intelligence technologies for sustainable competitive advantages under rapid technological and socioeconomic external environmental changes. However, there are obstacles to achieve the project goals, corporate's strategy and objectives due to various kind of risks based on characteristics of projects and conflicts of stakeholders participated on projects. Hence, the solutions are required to resolve the various kind of risks and conflicts of stakeholders. The objectives of this study are to investigate the impact of the project governance, agency conflicts on the project success based on agency theory by using the statistical hypothesis testing the relationship among those variables. As a result of hypothesis testing, we could find that the project governance impacts positively on project success and negatively on the agency conflicts. Further, the agency conflicts impacts negatively on the project success. Finally, we could find that the agency conflicts such as goal conflict, different risk attitude and information asymmetry between project manager and team members impact negatively on the project success. Meanwhile, the project governance impact positively on the project success, negatively impact on the agency conflicts such as goal conflict, different risk attitude and information asymmetry between project manager and project team members. In order to increase the project success rate, the project governance institutions such as PGB (Project Governance Board), EPMO (Enterprise Project Management Office), PSC (Project Steering Committee) are needed to prevent or reduce the agency conflicts between project manager and team members.

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF

Biohydrogen Generation and Purification Technologies for Carbon Net Zero (탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개)

  • Hyo Won Kim
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.168-180
    • /
    • 2023
  • H2 generation from renewable sources is crucial for ensuring sustainable production of energy. One approach to achieve this goal is biohydrogen production by utilizing renewable resources such as biomass and microorganisms. In contrast to commercial methods, biohydrogen production needs ambient temperature and pressure, thereby requiring less energy and cost. Biohydrogen production can reduce greenhouse gas emissions, particularly the emission of carbon dioxide (CO2). However, it is also associated with significant challenges, including low hydrogen yields, hydrodynamic issues in bioreactors, and the need for H2 separation and purification methods to obtain high-purity H2. Various technologies have been developed for hydrogen separation and purification, including cryogenic distillation, pressure-swing adsorption, absorption, and membrane technology. This review addresses important experimental developments in dense polymeric membranes for biohydrogen purification.

Priority Analysis of Climate Smart Agriculture (CSA) Technology using Analytic Hierarchy Process (AHP) (계층화 분석기법(AHP)을 이용한 기후스마트농업(CSA) 기술의 우선순위 분석)

  • HyunJi Lee;KyungJae Lee;Sung Eun Sally Oh;Yun Yeong Choi;Brian H.S. Kim
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.127-138
    • /
    • 2022
  • In responding to climate change in the agricultural sector, Climate Smart Agriculture (CSA) is an approach to establish a sustainable agricultural system through comprehensive management of technology, policy, and investment. The international community is continually expanding CSA implementation, and it became more important to understand the status of the domestic agriculture system and practices that are relevant to CSA. This study explored the available CSA in domestic agricultural systems and presented the order of relative importance of CSA technology. AHP analysis is employed for the evaluation with the following criteria: productivity, marketability, adaptability, and mitigation. The relative importance is evaluated with six agricultural technologies (soil, crop management, water, energy efficiency, alternative energy, and precision agriculture) in 28 agricultural technology sectors. The results of the AHP analysis showed that 'alternative energy' was found to be a top priority among the agricultural technology sectors, and 'shallow depth drain in rice paddy' was a top priority for agricultural technology. Also, the 'marketability' in soil and water sectors, 'mitigation' in crop management, and 'adaptability' in energy efficiency and alternative energy were given higher priority. The results of this study can be used as a good source for strategic CSA preparation and application.