• Title/Summary/Keyword: Sustainable Durability Design System

Search Result 10, Processing Time 0.031 seconds

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

Strategic Characteristics of Technologization for Circular Fashion System (순환 패션 시스템을 위한 테크놀로지제이션의 전략적 특성)

  • Mikyung Kim;Eunhyuk Yim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1039-1057
    • /
    • 2022
  • The fashion system has been criticized for relying on a linear economy to reduce short-term costs and increase profits. Meanwhile, the circular economy strives to expand the value chain through a closed loop for companies, society, and the environment by separating consumption from resources. This study aims to elucidate the strategic characteristics of the technological measures that fashion companies and brands are trying to innovate into a sustainable fashion system on the basis of the circular economy concept. Thus, we conducted case studies by dividing the value chain of the fashion system into design, production, and consumption to identify the technological development of the circular fashion system from a technologization perspective that incorporates technological values. First, design appeared to strengthen emotional durability, design and process with circulation in mind, and fashion product digitalization. Second, production manifested itself as material development for the new fiber economy, improvement of non-environmental processes, and customization of demand-driven, responsive production. Third, consumption was the spread of the environmental consumption culture through the sharing economy platform, the realization of a virtual wearing experience to prevent rapid disposal, and the provision of information on sustainable consumption.

A Study on the Sustainable Characteristics of the London City Hall (런던 시청사의 지속가능적 특성에 관한 연구)

  • Chung, Tae-Yong
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.3-12
    • /
    • 2011
  • The purpose of this study is to analyze the sustainable characteristics of London city hall designed by Norman Foster. The most important part of sustainable architecture might be the energy reduction including minimizing CO$_2$ emission but social and economical aspects of sustainability should not be neglected. London City Hall as a successful example of sustainable architecture depends its success on the harmony of social, environmental and economical aspects of sustainability. Social sustainability in London City Hall appears on appropriateness and public good in the facility. London City Hall act as a symbol of redevelopment and civic community. Environmental sustainability of London City Hall summarized as using unique building form, double skin and underground water cooling system for the purpose of energy saving. Computer modeling technology was introduced to save construction cost for economic aspect of sustainability. Rational configuration of mechanical system strengthen the durability of facility. In case of London City Hall, the function of building, site condition and architectural concept fulfill the every aspects of sustainability in architecture. Besides these conditions, Foster applied sustainability to London City Hall as active and concrete design concept to complete its design goals.

Application of Lightself to Buildings as a Integrated Daylighting System (건축물 일체형으로서 광선반형 자연채광시스템의 건축물 적용기법에 관한 연구)

  • Kim, Jeong-Tai;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • For sustainable building design, using day lighting is considered a variable technique to save energy and create comfort indoor environments. Specially, the lightself as a integrated daylighting system is one of the most important techniques due to it's durability, availability and lighting performance. This paper aims to analyze the development and architectural application of a lightself system to buildings as a integrated day lighting system. For the study, advanced lightself systems developed in abroad such as "Integrated Enveloped and Lighting System", "Anidolic Daylighting System" and etc. are analyzed. Also, the architectural examples are investigated. As results, the new technologies such as optically treated reflective and sun-tracking are adopted to improve daylight performance. And, lots of environmentally friendly buildings are installed on integrated lightself system.

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

A Study on Interior Design Planning of Long-Life Housing - Focus on Case Studies - (장수명 주택의 공간구성 분석에 관한 연구 - 국내.외 사례를 중심으로 -)

  • Kim, You-Na;Kong, Soon-Ku;Chu, Beom
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.136-144
    • /
    • 2010
  • Since most domestic apartment, built in bearing wall system limiting variability of space, in spite of its good durability, cannot accept life style change and is being wasted, dumped scraps of which cause environmental pollution and waste of resources. As a response for this, researches on sustainable housing, that is, 'long-life housing' which has high durability, and variability responding life style change of the resident are in progress in and out of country. Therefore, this article aims, in suggesting the various status appearing on apartment and the interior plan responding the problem, to research on the house plan in the future which can be used continuously instead consuming type of apartment shortly used and discarded with understanding of long-life housing developed in foreign countries, and grasping the factors of application plan. Various reports from previous researches were comparatively analyzed and the studies on the characteristics, the real examples and the types of the surfaces were performed on the experimental model of long-life housing and similar residential surfaces to find the concept to be applied to Long-Life Housing and the introduction method of such concept. This article tries not only to prevent 'scarp and build', the serious cause of environmental pollution, but also to be basic materials for interior construction plan afterwards through 'long-life housing interior design plan' as the new conception which can accept life style and life cycle change.

Interaction assessment and optimal design of composite action of plastered typha strawbale

  • Olatokunbo, Ofuyatan;Adeola, Adedeji;Maxwell, Omeje;Simon, Olawale
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.221-231
    • /
    • 2017
  • The concept design of the typha strawbale masonry came up as a result of the urgent demand for a means of constructing sustainable buildings, both in rural and urban settlement, not only suitable for dwellers but for keeping farm products by structures that will respond to the environmental eco-system, coupled with the fact that such structures are also affordable, durable and easy to maintain during their service period. The effects of contact between plaster and the stacked strawbale of a masonry needs to be established and design optimization for durability and stability of the masonry be obtained. The assessment will involve the application of plaster materials (cement and natural earth) to the wall specimen panels. Past works have shown that plastered strawbale walls have adequate resistance against the appropriate vertical loads, and further showed that the earth plaster can bear higher stress than the cement plastered straw bale. There is the implication that the collapse or response of the earth-strawbale wall is significantly higher compared to that of cement-strawbale from other straw-based masonries. Therefore the allowable stresses of plastered typha strawbale shall be predicted for their optimum values using SAP2000. The stress stability of each masonry is obtained by analytical model using the best fit variables for the wall height and thickness.

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.

Innovation and craft in a climate of technological change and diffusion

  • Hann, Michael A.
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.5
    • /
    • pp.708-717
    • /
    • 2017
  • Industrial innovation in Britain, during the eighteenth and nineteenth centuries, stimulated the introduction of the factory system and the migration of people from rural agricultural communities to urban industrial societies. The factory system brought elevated levels of economic growth to the purveyors of capitalism, but forced people to migrate into cities where working conditions in factories were, in general, harsh and brutal, and living conditions were cramped, overcrowded and unsanitary. Industrial developments, known collectively as the 'Industrial Revolution', were driven initially by the harnessing of water and steam power, and the widespread construction of rail, shipping and road networks. Parallel with these changes, came the development of purchasing 'middle class', consumers. Various technological ripples (or waves of innovative activity) continued (worldwide) up to the early-twenty-first century. Of recent note are innovations in digital technology, with associated developments, for example, in artificial intelligence, robotics, 3-D printing, materials technology, computing, energy storage, nano-technology, data storage, biotechnology, 'smart textiles' and the introduction of what has become known as 'e-commerce'. This paper identifies the more important early technological innovations, their influence on textile manufacture, distribution and consumption, and the changed role of the designer and craftsperson over the course of these technological ripples. The implications of non-ethical production, globalisation and so-called 'fast fashion' and non-sustainability of manufacture are examined, and the potential benefits and opportunities offered by new and developing forms of social media are considered. The message is that hand-crafted products are ethical, sustainable and durable.

Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials (비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발)

  • Gwang Hyeon Kim;Hyeon Jun Park;Bitna Bae;Haksu Jang;Cheol Min Kim;Donghun Lee;Kwi-Il Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.