• 제목/요약/키워드: Suspension systems

검색결과 528건 처리시간 0.025초

자동차 스프링 시스템의 진동에 관한 연구 (A study on the vibration of automobile spring suspension system)

  • 박종용;김원석;지성철;이장무;염영하;김중희
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1450-1461
    • /
    • 1988
  • 본 연구에서는 국내에서 제작된 차량을 대상으로 임펄스 입력이 가하여졌을 때의 동적 특성을 예측하기 위하여 동적 모델링과 연립 운동 방정식을 구하고 수치 적 분 계산 프로그램을 작성하였다. 또한 상용 프로그램인 ADAMS를 이용하여 범프를 통 과할 때의 차량의 동적 거동을 구하고 이를 실험적으로 검증하여 모델의 타당성을 입 증하였다.

현가장치의 비선형 설계변수 추정 (Nonlinear Parameter Estimation of Suspension System)

  • 박주표;최연선
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

A Vibration-Rejection Control for a Magnetic Suspension System

  • Kim, Jong-moon;Kim, Choon-kyung;Park, Min-kook;Kim, Seog-joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.37.4-37
    • /
    • 2001
  • This paper presents a vibration-rejection control design for a magnetic suspension system which has strong non-linearity, open-loop unstable characteristics, high-order flexible modes, and parameter variations. The target plant to be controlled consists of a U-core electromagnet and a flexible rail. We describe the test rig and formulate the mathematical model and then we set up a control problem as the mixed sensitivity problem where the augmented plant is constructed with frequency weighting functions and the feedback controller is designed by using the H$\infty$ controller. The effectiveness of the designed controller for the magnetic suspension system with high-order flexible modes is validated and justified using several simulations. These results show that the magnetic suspension system is robustly stable against disturbance and gives the well-damped tracking performance ...

  • PDF

Potentially-innovative options in designing suspension bridges with railway crossing

  • F. Casciati;S. Casciati
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.339-347
    • /
    • 2023
  • Both the first author and the company of the second author were involved, directly or indirectly, in the design stage of a permanent link between the bottom of the Italian peninsula and the nearby Sicily island. This ambitious project was left in stand-by from 2013 to 2023. The current political revival originates some thoughts on the updated desired performance of suspension bridges, without any immediate reference to that specific crossing. It is simply regarded as a starting point. After an update on recent worldwide realizations, the authors focus their attention on four basic aspects: the span length, the girder scheme, the foundation technology and the bridge runability. Eventually, structural control and monitoring aspects are discussed as potentially innovative options in designing suspension bridges with railway crossing.

전기 자동차용 경량화 서스펜션 모듈 개발 (Lightweight Suspension Module Development for Electric Vehicle)

  • 정윤식;신헌섭;임성수;최진환
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1015-1019
    • /
    • 2013
  • 현재 전기자동차의 높은 에너지 효율 및 승차감을 모두 만족시키기 위해 경량 서스펜션 개발에 많은 초점이 맞추어 지고 있다. 개발되고 있는 경량 서스펜션중 rubber tube로 만들어진 에어서스펜션이 에너지효율 및 승차감을 만족시킨다고 평가 받고 있다. 본 논문에서는 높은 전장비의 특징을 가지는 전기자동차용 에어서스펜션을 개발하였다. 또한 실제 에어서스펜션의 성능 향상 연구를 위해 유연 다물체 동역학 모델(MFBD) 방법을 이용하여 모델링하였고, 에어서스펜션에서 중요한 역할을 하는 rubber tube의 경우는 FE기법을 통해 모델링 하였다. 에어서스펜션의 각 모듈 특성을 고려하여 모듈별 물성실험을 진행 및 물성치를 추정하였다. MFBD모델의 신뢰성 확인을 위해 물성치를 적용시킨 시뮬레이션 결과와 실제 실험결과를 비교하였다.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구 (A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper)

  • 윤영환;최명진;유송민
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

차량 전장 부품 특성이 MDPS 조타 토크에 미치는 영향 (Effects of Vehicle Electric Components on the Steering Input Torque)

  • 조현석;이병림;장세현;박영대;김민준
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.113-119
    • /
    • 2014
  • For the robust design of Motor Driven Power Steering (MDPS) systems, it is important to consider energy efficiency from every aspect such as system configuration and current flow, etc. If design optimization is not considered, it has many problems on a vehicle. For example, when evaluating steering test, particularly the Catch-up test which turning the steering wheel left or right quickly, steering effort should be increased rapidly. Also a vehicle might have poor fuel efficiency. In this study, it is calculated energy consumption for each component of the steering system and analyzed factors of energy consumption. As a result, this paper redefines a method to estimate steering input torque using characteristics of vehicle electric components and then conducts an analysis of contribution for the Catch-up.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

반도체 반송 시스템을 위한 축소형 자기부상 열차 시스템 개발 (Development of Maglev Vehicle for Semiconductor Transport System in Small Scale)

  • 성소영;최장영;성호경;조한욱;장석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.616-618
    • /
    • 2008
  • This paper propose nonlinear electromagnet suspension system model and defines electromagnet design specification of Maglev vehicle for transport system of semiconductor manufacturing line. The bandwidth of the acceleration sensor is defined and manufactured using i-mems technique acceleration sensor from this Nonlinear electromagnet suspension model. Through the simulation of non-linear model it was possible to compare the gain with the experiment to confirm the accuracy of the nonlinear suspension system. Till now mainly linear model has been used in many electromagnet suspension system, which results different gains in simulation and experiments. This more accurate non-linear model can be applied in many ways in designing electromagnet suspension systems.

  • PDF