• Title/Summary/Keyword: Suspension stabilizer

Search Result 53, Processing Time 0.025 seconds

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

Suspension Polymerization of Styrene with Tricalcium Phosphate as Stabilizer

  • Hong, Soon-Gil;Park, Moonsoo
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.247-252
    • /
    • 2000
  • Suspension polymerizations of styrene were conducted in the aqueous phase with tricalcium phosphate (TCP) as a stabilizer and $\alpha$, $\alpha$'-azobis(isobutyronitrile) (AIBN) as an initiator. Various amounts of initiator and stabilizer were selected and the reaction was carried out at a selected temperature between 60 to 80 $\^{C}$. It was found that the combination of 5 wt% stabilizer and 2.427$\times$10$\^$-3/ mol/L of costabilizer is the minimum amount for suspension polymerization reaction to produce particles in the aqueous phase. Particles were found to be polydisperse in diameter, regardless of reaction conditions. Class transitions were observed to be around 95$\^{C}$, nearly independent of reaction temperature and initiator. Homogenizer was found to be essential in forming particles in the proximity of tens of micrometers in diameter in suspension polymerization with TCP as stabilizer.

  • PDF

Development of a CAE Technique for Vehicle Suspension Design -Roll Stabilizer Bar Modelling and Damper Design- (자동차 서스팬션의 설계를 위한 CAE 기법 개발 -롤안정바 모델링 및 댐퍼 설계-)

  • 김광석;길혁문;유완석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.160-168
    • /
    • 1998
  • In this paper. the Joint reaction forces in the suspension system of a passenger car are determined to calculate the deflections and stresses in the damper strut. A mathematical model of the Roll Stabilizer Bar(RSB) is developed to include the RSB forces in the dynamics analysis. Using these RSB forces, the variations of the damper forces and spring forces due to the wheel strokes are determined in a McPherson strut suspension. The graphs of shear force diagram, bending moment diagram, bending stress and deflections are drawn by the calculated joint reaction forces.

  • PDF

Analyzing Materials Property using Optical Sensing Technique of Stabilizer Link for Automobile Parts (수송기계용 Stabilizer Link의 광센서를 이용한 부품성능평가)

  • Nam, K.W.;Woo, Y.M.;Oh, J.H.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.47-53
    • /
    • 2010
  • A stabilizer link connects the stabilizer bar to the lower arm of the suspension. When a vehicle is turning, lateral forces from the tire are transmitted through the stabilizer link into the stabilizer bar. The stabilizer bar will twist, thus adding rigidity to the vehicle body. In this study, the stabilizer link body was manufactured by using composite material with POM-GF25%. Therefore, the strength evaluation of stability link body with composite material carried out from tensile, wear and fatigue test. The tensile strength between the stability link body with composite material and the rod with knurling was the largest of four types of rod. In Analyzing materials property using optical sensing technique of stabilizer link for automobile parts, its has been identified the safety.

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

Suspension Polymerization with Hydrophobic Silica as a Stabilizer III. Poly(butyl methacrylate) Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 III. 카본블랙을 함유하는 폴리부틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.477-484
    • /
    • 2009
  • Suspension polymerization with hydrophobic silica as a stabilizer and AIBN as an initiator was conducted to synthesize PBMA particles and PBMA composite particles containing carbon black. Surface modification of silica particles by controlling pH revealed that 90% of them functioned as stabilizer and 10% were incorporated into PBMA particles. While stabilizer concentration had no impact on reaction kinetics and particle diameter, an increase in stabilizer concentration displayed an increase in molecular weights when it exceeded 1.67 wt%. An increase in initiator concentration and reaction temperature decreased molecular weights in close agreement with the theoretical equation. An increase in carbon black concentration from 1 to 7 wt%, relative to the monomer, showed a progressive decrease in reaction conversion. As carbon black was increased from 3 to 5 wt%, glass transition showed a $4^{\circ}C$ increase. The presence of carbon black was confirmed by TEM while its concentration was measured by TGA.

Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

  • Bae, Eun-Joo;Park, Hee-Jin;Park, Jun-Su;Yoon, Je-Yong;Kim, Young-Hun;Choi, Kyung-Hee;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.613-619
    • /
    • 2011
  • Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

A study of development of automobile's stabilizer using composite (복합재를 이용한 자동차 스테빌라이져 개발 관한 연구)

  • 김영수;김인관;김대식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.608-611
    • /
    • 2000
  • This study is for stabilizer, a parts of automotive suspension system, that would be changed to Plastic Material. The part is designed and analyze by PRO-E. The position of Weld Line is founded by the C-mold, computer software with FEM. Then a Mold is designed by consideration with locating Weld Line. Mechanical property tests, such as tensile test, compression test, ball pull-out test, fatigue test and durability test are done the part by SAE test spec. Most of all the result of the tests show over requirement result without the compression test.

  • PDF

Effect of Gelatin on the Stability of Heavy Chain Monoclonal Antibody Production from Plant Suspension Cultures

  • Ryland, J.;Robert, P.;Michael, Linzmaier;Lee, James M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.449-454
    • /
    • 2000
  • The heavy chain monoclonal antibody (HC MAb) was produced in suspension cultures of genetically modified Nicotiana tabacum. The HC MAb secreted to the medium was unstable due to unfavorable interactions in the plant cell medium. The addition of gelatin (5g/l) stabilized the extracellular HC MAb and increased its production 10-fold. A kinetic model was developed describing the interaction between the secretedprotein and the stabilizer. The model accounted for the inactivation of the protein by simple aggregation and general instability. It was assumed that the secreted protein and the stabilizer form a stable complex. Culturing the cells semicontinuously could further increase the productivity of HC MAb.

  • PDF

Preparation of Poly(butyl methacrylate) Composite Beads containing Carbon Black by Suspension Polymerization (현탁중합법에 의한 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • Suspension polymerization was carried out to synthesize poly(butyl methacrylate) (PBMA) composite particles containing carbon black. Water was selected as a reaction medium, hydrophobic silica as a stabilizer and azobisisobutyronitrile as an initiator. Concentration of stabilizer was varied from 0.67 to 2.55 weight% with respect to the water, and that of initiator was varied from 0.25 to 3.00 weight% with respect to the butyl methacrylate (BMA) monomer. All polymerization reactions were conducted at 75$^{\circ}C$. It is found that stabilizer concentration has no impact on reaction kinetics, while an increase in initiator concentration enhances polymerization reaction rate. Increase of carbon black concentration from 1 to 3 to 5 wt% into PBMA displayed progressive decrease in reaction conversion. The particle diameter of PBMA composite particles containing carbon black was found to be between 5 and 30 ${\mu}m$. Glass transition was determined to range from 23.8 to 24.7$^{\circ}C$, irrespective of variation in the concentration of stabilizer, initiator or carbon black.