• Title/Summary/Keyword: Suspension stability

Search Result 409, Processing Time 0.028 seconds

Effects of Synthetic Temperature and Suspension Stability of CeO2 Abrasive on CMP Characteristics (CeO2 연마입자의 합성온도와 수계안정성이 CMP 특성에 미치는 영향)

  • 임건자;김태은;이종호;김주선;이해원;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.167-171
    • /
    • 2003
  • CMP(Chemical Mechanical Planarization) slurry for STI process is made by mechanically synthesized$CeO_2$as abrasive. The abrasive can be stabilized by electrostatic or steric stabilization in aqueous slurry and steric stabilization is more effective for long-term stability. Blanket-type$SiO_2$and $Si_3N_4$ wafers are polished with CMP slurry containing$CeO_2$synthesized in 50$0^{\circ}C$ or $700^{\circ}C$. Removal rate and surface uniformity of$SiO_2$and$Si_3N_4$wafer and selectivity are influenced by synthetic condition of abrasive, suspension stability and pH of slurries.

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

Electrostatic suspension of glass plate

  • Jeon, Jong-Up;Woo, Shao-Ju;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.267-270
    • /
    • 1996
  • This paper reports about the successful suspension of a glass plate by electrostatic forces. In order to implement a stable suspension, the electrostatic forces exerted on the glass plate are actively controlled on the basis of the gap lengths between the glass plate and the stator electrodes. In this paper, the dynamic model of the suspension system and the influence of the resistivity of glass on the system stability are described, followed by stator electrode design, the experimental apparatus and a stabilizing controller. Experimental results show that the glass plate can be suspended at a gap length of about 0.3 mm. The influence of air humidity on the suspension initiation time, and the lateral dynamic characteristic are also described.

  • PDF

A study on development of hydraulic active suspension system (유압식 능동 현가시스템의 개발에 관한 연구)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

Analysis for Performance of Semi-active suspension with Running condition and Specification of Variable Damper (주행조건 및 가변 댐퍼 사양에 따른 준능동형 현가시스템의 성능 분석)

  • Sohn In-Suk;Lee Nam-Jin;Kim Chul-Gun;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.805-810
    • /
    • 2005
  • The main functions of suspension system of railway vehicle are isolating vibration from track irregularity to car-body for the Ride quality and keeping its stability with limitation of vehicle's movement. These two functions conflict with each other, then it is impossible to achieve both of performance with traditional passive suspension which has constant characteristics. So, to improve this situation the active suspension was suggested and in specially the semi-active suspension is noticed for its effectiveness on cost despite of its lower performance than full-active suspension. In this study the control logic made through LQG theory was designed with simplified vehicle model and variable damper model defined by $1^{st}$ order system, then the analysis of simulation results was done to understand influence on the performance of semi-active suspension with running conditions and response characteristics of variable damper.

  • PDF

Chromosome Variation in Suspension Cells Derived from Cultured Immature Embryo of Triticum spp. (밀(Triticum spp.)의 미성숙배로부터의 유도한 현탁 배양세포에서의 염색체 변이)

  • 방재욱
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.189-196
    • /
    • 1990
  • Suspension cell lines have been newly established from the calli derived from the immuature embryo culture of hexapolid (Triticum aestivum var. sicco), tetrapolid (T. durum) and diploid (T. tauchii or Aegilops squarrosa) wheat species. The chromosomal variation in suspension cultured cell lines was examined and old cell line, C82d, established from T. aestivum var. copain was also used. New method using 1-bromonaphthalene for metaphase rapping of suspension cells was developed. Variation in chromosome number was observed among all the suspension lines. Cells with doubled chromosome number and deleted chromosome were also observed. Extensive structural changes in chromosome were found in C82d line. Chromosome aberrations showed loss of chromosome arms and chromosome segment. The mean chromosome number in suspension cells of T. aestivum var. sicco was 40, in C82d line 33, in T. durum 28 and in T. tauchii 14. The stability of chromosome in suspension cells of diploid and tetrapolid wheats was higher than that of hexaploid wheat.

  • PDF

A Study on Suspension Optimization of the Korean Personal Rapid Transit Vehicle (한국형 PRT차량의 현가장치 최적화 연구)

  • Kim, Hyun Tae;Kim, Jun Woo;Cho, Jeong Gil;Koo, Jeong Seo;Kang, Seokwon;Jeong, Raggyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.317-326
    • /
    • 2016
  • In this study, running stability and ride quality analyses, applying the 'ISO 3888 (double lane change)' and 'ISO 2631-1' (mechanical vibration and shock) tests, were performed for the suspension optimization of the Korean personal rapid transit (PRT) vehicle. The suspension optimization results for running stability and ride quality were derived by applying the multiresponse surface method. From the comparisons of the optimization results for different ratios of the objective functions of running stability and ride quality, we derived the best objective function ratio of 3.9-to-6.1 to improve both the running stability and the ride quality. With the optimized results, the suspension stiffness became 30.68 N/mm, between the value of the $S_2$ and $S_3$ models, and the damping coefficient equaled that of the $D_1$ model. When compared with the suspension of the current PRT vehicle, the roll angle, yaw rate, sideslip angle, and ride comfort were improved by 0.37, 0.37, 2.8, and 5, respectively.

Stability Assessment of a Bi8h Speed Train via Optimal Design (고속전철 현가장치의 민감도해석을 통한 최적설계)

  • 탁태오;윤순형
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.542-549
    • /
    • 1999
  • The purpose of this study is to investigate stability of a high speed train and to propose optimal design using sensitivity analysis of suspension design parameters. A form of equations of motion in tangent track and curve track is obtained based on each creep force. Tangent track and curve track equations include lateral, rolling and yawing motions of wheel sets, bogies, and carbodies. Three track cases have been chosen to stability assesment of a high speed train analysis. Sensitivity equations are set up by directly differentiating the equations of motion. This study def'.led Stability performance index of a high speed train in tangent track and curve track. The relative magnitude of the effect of suspension parameters on the critical speed is computed, and by adjusting these parameters, the increase of the critical speed is achieved.

  • PDF

Influence of SiO2 Content on Wet-foam Stability for Creation of Porous Ceramics

  • Bhaskar, Subhasree;Park, Jung Gyu;Cho, Gae Hyung;Seo, Dong Nam;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.511-515
    • /
    • 2014
  • The thermodynamic instability of bubbles in wet-foam colloidal suspension is due to the substantial area of their gas/liquid interface. Several physical processes lead to gas diffusion from smaller to larger bubbles, resulting in a coarsening and Ostwald ripening of wet foam. This includes a narrowing of the bubble size distribution. The distribution and microstructure of porous ceramics, the adsorption free energy and Laplace pressure of $Al_2O_3$ particle-stabilized colloidal suspension, and $SiO_2$ content were investigated for tailoring the bubble size. Wet-foam stability of more than 80% is related to the degree of hydrophobicity with contact angles of $62-70^{\circ}$ achieved from the surfactant. The contact angle replaces part of the highly energetic interface and lowers the free energy of the system. This leads to an apparent increase in the surface tension (26-33 mN/m) of the colloidal suspension.

Sampled-Data Modeling and Dynamic Behavior Analysis of Peak Current-Mode Controlled Flyback Converter with Ramp Compensation

  • Zhou, Shuhan;Zhou, Guohua;Zeng, Shaohuan;Xu, Shungang;Cao, Taiqiang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.190-200
    • /
    • 2019
  • The flyback converter, which can be regarded as a nonlinear time-varying system, has complex dynamics and nonlinear behaviors. These phenomena can affect the stability of the converter. To simplify the modeling process and retain the information of the output capacitor branch, a special sampled-data model of a peak current-mode (PCM) controlled flyback converter is established in this paper. Based on this, its dynamic behaviors are analyzed, which provides guidance for designing the circuit parameters of the converter. With the critical stability boundary equation derived by a Jacobian matrix, the stable operation range with a varied output capacitor, proportional coefficient of error the amplifier, input voltage, reference voltage and slope of the compensation ramp of a PCM controlled flyback converter are investigated in detail. Research results show that the duty ratio should be less than 0.5 for a PCM controlled flyback converter without ramp compensation to operate in a stable state. The stability regions in the parameter space between the output capacitor and the proportional coefficient of the error amplifier are enlarged by increasing the input voltage or by decreasing the reference voltage. Furthermore, the ramp compensation also can extend to the stable region. Finally, time-domain simulations and experimental results are presented to verify the theoretical analysis results.