• 제목/요약/키워드: Suspension element

검색결과 274건 처리시간 0.028초

고트랙밀도 HDD 서스펜션의 동특성 해석 (suspension dynamics of HDD for high track density)

  • 김정주;전정일;변용규;노광춘;정정주;전태건
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.

다중지지된 자정식 현수교의 비선형 지진응답 해석 (Nonlinear Earthquake Response Analysis of a Multi-Su, pp.rted Self-anchored Suspension Bridge)

  • 김호경;서정인
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.45-58
    • /
    • 1997
  • 지진하중을 받는 현수교의 기하비선형 거동특성을 분석하기 위하여 비선형 지진응답해석 알고리즘을 정립하고 그에 따른 전산프로그램을 개발하였다. 해석이론을 최근 시도되고 있는 자정식 현수교나 mono-duo 형식의 주케이블 형상을 갖는 독특한 현수교에 대해서는 적용가능하도록 유한요소법을 사용하였다. 입력지진은 장지간 교량의 다중지지효과를 고려하기 위하여 한 지점에서 다른쪽 지점으로 형상변화 없이 이동한다고 가정하였다. 하나의 mono-duo 자정식 현수교에 대하여 비선형 지진해석을 수생한 결과 예제의 교량이 비교적 단지간이어서 비선형 거동특성과 다중지지 효과가 두드러지게 나타나지는 않음을 확인할 수 있었다.

  • PDF

밀리엑츄에이터가 내재된 신규 서스펜션 (New Milliactuator Embedded Suspension)

  • 윤준현;홍어진;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.477-482
    • /
    • 2001
  • To realize higher track density of HDD, the servo bandwidth should be higher, however, is limited by the mechanical resonances of the arm, coil of the VCM and ball bearing pivot. The dual-stage actuator systems have been suggested as a possible solution. For the dual-stage actuator systems based on the suspension, the suspension resonance frequencies in the radial access direction are important factors to increase a servo bandwidth, however the improvement of these frequencies may affect the shock resistance performance and spring constant. The slider's flying stability can be deteriorated by the change of a vertical stiffness. In this work, we have investigated a suspension design scheme possessing a milliactuator for dual-stage actuator systems and also achieved higher mechanical characteristics. Design parameters are deduced by finite element analysis with sensitivity function. It is confirmed that the proposed suspension with the milliactuator has the capability of fine tracking motion, due to its hinge structure on the spring region, and achieves higher mechanical resonance frequencies in the radial access direction with a high-shock resistance and a low-spring constant.

  • PDF

현가계의 교체가 가능한 모듈형 실험차량의 개발 (A Development of the Modular Experimental Vehicle with Variable Suspension Systems)

  • 배상우;강주석;윤중락;이재형;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.132-139
    • /
    • 1997
  • It is difficult for most of passenger cars to attach various types of suspensions. The modular experimental vehicle, which is designed to exchange suspension systems, has been developed to evaluate the effect of design changes of a suspension upon ride and handling characteristics of a vehicle. In order to enable the assemblage between modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, module frames and brackets are designed using three-dimensional solid modeler to check the interference between each part of a vehicle. Steady-state and transient road tests were performed. Multibody dynamic model and simplified linear vehicle model are made to compare with the tests. The results of simulations and tests show the performance and validity of this experimental vehicle.

  • PDF

프린징 자속을 고려한 베어링리스 SRM 회전자극 설계 및 특성분석 (Rotor Pole Design and Characteristics Analysis of the Bearingless Switched Reluctance Motor Considering Fringing Flux)

  • 이찬교;오주환;신광철;권병일
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.57-64
    • /
    • 2010
  • In this paper, a novel Bearingless Switched Reluctance Motor(BLSRM) with the shoe rotor pole in order to minimize the torque ripple and the suspension force ripple at an overlap position is proposed. For reduction the torque ripple and the suspension force ripple at an overlap position, the fringing flux is used for the main flux. This configuration of the rotor pole results in more average torque with high suspension force. In addition, this paper is compared the transient characteristics using the inductance look-up table. The torque, radial force and flux density are analyzed by finite element method.

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

현가계의 교체가 가능한 모듈형 실험차량의 개발 (A Development of Modular Experimetal Vehicle for Exchanging Suspension Systems)

  • 배상우;강주석;윤중락;이장무;탁태오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.847-851
    • /
    • 1996
  • In this study, in order to adapt various types of suspensions that is not possible for a passenger car, and to validate the effect of the design change of a suspension upon ride and handling characteristics of vehicle, the modular experimental vehicle, which makes possible to exchange suspension systems, has been designed and developed. In order to enable the assemblage between the modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, the module frames and the brackets are designed are designed using three- dimensionalsolid modeler to check the interference between each part of a vehicle. The results of simulation and experiment are compared.

  • PDF

야드형 AGV-서스펜션 파라미터의 최적화를 위한 충격하중 해석 (Analysis of Impact Load for Optimum of Suspension Parameter of Yard AGV)

  • 홍도관;김재헌;안찬우;전언찬;김중완
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.161-167
    • /
    • 2002
  • Cai-go management facility of harbor are required an expansion due to increase of cargo quantity. Design technology of Yard AGV call be possible to deal many cargo rapidly and accurately. So it is produced a profit about cal-go management. This study is presented optimum of suspension parameter for design technology Yard AGV. Model I, II are modeled about Initial of container weight, height. When the maximum stroke of suspension is 0.26m, optimum is achieved to reduce the reaction force at the minimum. Also, the reaction force is study to become stability in I second. A change of spring constant and coefficient of damper make change the reaction force and minimum reaction force appear in optimum value. All modeling and analysis are used combination. contact element of Ansys program.

  • PDF

트럭 운전석 현가 댐퍼의 초기설계 (Initial Design of A Suspension Damper for Truck Driver's Seat)

  • 백운경;오세운
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF