• 제목/요약/키워드: Suspension Dynamic Load

검색결과 88건 처리시간 0.022초

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

포장 프로파일이 포장 피로수명에 미치는 영향 분석 (Effect of Surface Profiles on Pavement Fatigue Life)

  • 박대욱;안덕순;권수안
    • 한국도로학회논문집
    • /
    • 제11권2호
    • /
    • pp.167-174
    • /
    • 2009
  • 본 논문에서는 아스팔트 콘크리트 포장의 표층 프로파일과 차량특성인 차량속도와 현가장치를 다르게 하여 트럭 시뮬레이션 프로그램을 통한 동적하중을 분석하였다. 다양한 포장 상태의 프로파일을 입력하여 동적하중을 분석하였으며 프로파일, 차량의 현가장치, 차량속도에 따른 동적하중 변화를 분석하였다. 포장 거칠기가 증가할수록 동적하중이 증가하였으며, 속도가 증가할 수 록 동일한 포장 거칠기 하에서 동적하중이 증가하였다. Walking beam 현가장치가 Air spring 현가장치에 비해 더 큰 동적하중을 보였다. 동적하중 공분산을 이용하여 포장파손 지수를 결정하였으며, 동적하중 공분산과 신뢰도, 아스팔트 혼합물의 파괴매개변수가 증가할 수록 포장파손지수도 증가하였다. 본 연구의 결과를 이용하여 차량속도와 표층 아스팔트 혼합물 파괴특성에 근거한 포장 평탄성 규정에 이용할 수 있으며, 아스팔트 콘크리트 포장 시공 후 포장 평탄성에 근거한 지불규정에 효과적으로 사용할 수 있다고 판단된다.

  • PDF

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;임홍재
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.686-691
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증 (An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation)

  • 배상우;윤중락;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

동적 특성을 고려한 차량 현가 시스템의 내구해석 기법 (Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics)

  • 한우섭;이혁재;임홍재;이상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF

NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구 (Shape Design of the NFR Suspension Load Beam Considering Dynamic Characteristics)

  • Eun Gilsoo;Kim Nohyu
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.376.2-376
    • /
    • 2002
  • In this study, the shape of suspension load beam for NFR(Near Field Recording) was proposed, which was designed using Topology optimization based on Homogenization method. Lens and Micro-mirror are attached to the end of the suspension load beam for collection and control the light, which increasing the system mass. Increment of the system mass cause to decrease the tracking stiffness mode frequency. (omitted)

  • PDF

램프 로드-언로드 특성 향상을 위한 서스펜션강성 최적설계 (Optimal design of the suspension stiffness in HDD for improving the load/unload performance)

  • 강태식;김태수;이철우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.898-901
    • /
    • 2003
  • In order to get the drive reliability and low Power-consumption characteristics, most of small form factor HDD has und the load/unload mechanism instead of CSS type. Compared with CSS mechanism, the load/unload system has little opportunity of head/media contact during the disk spin-up and down. However, the load/unload mechanism needs the precise integration technology with slider, suspension, ramp and load/unload velocity, and all of these component s should be designed simultaneously, not an individually. In this paper, we focus the design of the suspension stiffness using the specified ABS design. We use the CML software to calculate the load/unload dynamic and use the RSM(Response surface method) to get the optimal condition of the suspension stiffness.

  • PDF

축하중을 고려한 단순보상의 이동탄성계의 진동해석 (Dynamic behavior of moving Elastic Body System on Simple Beam with Axial Load)

  • 김영수
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.67-73
    • /
    • 2000
  • The dynamic behavior of a moving elastic body system with three constant velocitics on a simple beam with an axial load is analyzed by numerical method. A moving elastic body system is composed of an elastic body and a suspension unit with two unsprung masses. The governing equations are derived with an aid of Lagrange's equation. These equation are solved by Runge-Kutta method. The damping coefficients a spring constants of the suspension unit the force circular frequency on a moving elastic body the velocity of a moving elastic body system. These effects are more important in the high modes of a simple beam.

  • PDF

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;박종성;이선병;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF