• 제목/요약/키워드: Suspending performance

검색결과 16건 처리시간 0.021초

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

CFD를 이용한 머드 탱크 2축 교반기의 회전방향에 따른 교반성능 연구 (Agitation Performance Study of 2-shafts Agitator Rotate Directio in the Mud Tank Based on CFD)

  • 임효남;이희웅;이인수;최재웅
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.111-118
    • /
    • 2014
  • In drilling process of oil wells, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. In this paper, a commercial CFD package(ANSYS Fluent 15.0) was used to solve the hydrodynamic force and evaluate mud mixing time in the mud mixing tank on offshore drilling platforms. Prediction of power consumption in co-rotating and counter-rotating models has been compared with results of Nagata's correlation equation. This research shows the hydrodynamic effect inside the two phase mud mixing tank according to rotating directions(co-rotating and counter-rotating). These results, we can conclude that the co-rotating direction of the two shafts with mixing blade in the mud mixing tank can be a preferable in power consumption and mixing time reduction.

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

건설 프로젝트 파이낸스(PF) 사업의 성공영향요인(KSF) 분석을 통한 사업성과 예측 모델 (Predicting Project Performance by Analyzing Key Success Factors on Project Fiancing(PF) Development)

  • 이동건;차희성
    • 한국건설관리학회논문집
    • /
    • 제15권5호
    • /
    • pp.127-137
    • /
    • 2014
  • 프로젝트 파이낸싱(PF) 개발사업은 다수의 차명자와 대규모의 금융조달을 통하여 공사를 수행함으로 국가경제개발과 건축 산업의 발전에 큰 영향을 끼치는 프로젝트의 형태이다. 그러나 국내 PF 개발사업의 경우 프로젝트에 대한 충분한 검토보다는 개발이익의 극대화의 측면에서 프로젝트를 진행함으로 인하여 현재 글로벌 금융위기와 부동산 침체에 의하여 사업의 중단이 속출하고 있다. 이에 본 연구에서는 PF사업의 리스크 요인을 도출하고 이를 요인분석을 통하여 PF사업의 성공영향요인을 도출하였고, 이를 Fuzzy-AHP기법을 활용하여 영향요인에 대한 정량화를 수행하였다. 그리고 도출된 PF 성공영향요인의 실제 사례 평가를 통하여 PF성공평가 점수와 프로젝트의 수익률에 대한 상관관계를 도출할 수 있었으며, 이를 통해 PF사업의 평가를 통하여 프로젝트 의사결정자의 의사결정에 도움을 줄 수 있을 것으로 사료된다.

다이아몬드 나노분말을 적용한 상용 열교환 유체의 열전도도 특성 (Thermal conductivity characteristics of commercial heat exchange fluids applying diamond nano-powder)

  • 손권;이정석;박태희;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.1-7
    • /
    • 2014
  • 기본유체에 나노분말을 분산시킨 나노유체는 기본유체보다 높은 열전도도를 보인다. 이러한 특성으로 인해, 에너지 효율을 향상시키기 위한 대안으로서 나노유체가 주목받고 있으며, 고효율을 필요로 하는 열교환기의 작동유체로 적용하기 위한 많은 연구가 진행되고 있다. 본 연구에서는 상용 열교환기의 작동유체로서 많이 사용되고 있는 증류수, 에틸렌글리콜, 에틸알코올에 나노다이아몬드 분말을 적용한 나노유체의 열전도도를 측정하였다. 나노유체는 매트릭스 합성 분산법을 이용하여 제조하였으며, 나노다이아몬드의 혼합량은 0.1, 0.3, 0.5, 1vol%로 하였다. 측정결과 모든 기본유체 조건에서 나노유체의 열전도도가 증가하였으며, 특히 증류수에 분산된 1vol%의 나노유체에서 23%의 높은 열전도도 향상 경향을 보였다.

시추용 머드혼합탱크의 비뉴턴 유체 모델에 대한 교반성능의 수치해석적 연구 (Numerical Study of Agitation Performance in a Drilling Mud Mixing Tank to Non-Newtonian Rheological Properties)

  • 임효남;이희웅;이인수;최재웅
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.29-37
    • /
    • 2014
  • Non-Newtonian fluid mechanics takes charge of an important role in the oil industries. Especially in the oil well drilling process, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. The purpose of this study is to examine the effect of fluid mud rheological properties to predict different characteristics of non-Newtonian fluid in the mud mixing tank on offshore drilling platforms. In this paper, ANSYS fluent package was used for the simulation to solve the hydrodynamic force and to evaluate mud mixing time. Prediction of the power consumption and the pumping effectiveness has been presented with different operating fluid models as Newtonian and non-Newtonian fluid. The comparison between Newtonain mud model and non-Newtonian mud model is confirmed by the CFD simulation method of drilling mud mixing tank. The results present useful information for the design of the drilling mud mixing tanks and provide some guidance on the use of CFD tool for such non-Newtonian fluid flow.