DOI QR코드

DOI QR Code

Thermal conductivity characteristics of commercial heat exchange fluids applying diamond nano-powder

다이아몬드 나노분말을 적용한 상용 열교환 유체의 열전도도 특성

  • Son, Kwun (Department of Mechanical Engineering, Korea Marine and Ocean University) ;
  • Lee, Jung-Seok (Department of Mechanical Engineering, Korea Marine and Ocean University) ;
  • Park, Tae-Hee (Neoenbiz, Co.) ;
  • Park, Kweon-Ha (Division of Mechanical & Energy Systems Engineering, Korea Maritime and Ocean University)
  • Received : 2013.07.19
  • Accepted : 2013.09.24
  • Published : 2014.01.31

Abstract

Nanofluids, suspending nano-particles of various materials, have a good heat transfer characteristics compared with pure base fluids. For the reason, nanofluids have been considered as one of the measure to improve energy efficiency, and studied to apply on a working fluid of a high performance heat exchanger. This study tested thermal conductivities of nanofluids applying diamond nano-powder on DI water, ethylene glycol, and ethyl alcohol. Nanofluids are fabricated by matrix synthetic method, and the volume percent of diamond nano-powder contained in the base fluid are 0.1, 0.3, 0.5, and 1vol%. As a result, thermal conductivities are enhanced with applying diamond nano-power. Especially, the conductivity is highly increased up to 23% at 1vol% nanofluid applying diamond nano-powder on DI water.

기본유체에 나노분말을 분산시킨 나노유체는 기본유체보다 높은 열전도도를 보인다. 이러한 특성으로 인해, 에너지 효율을 향상시키기 위한 대안으로서 나노유체가 주목받고 있으며, 고효율을 필요로 하는 열교환기의 작동유체로 적용하기 위한 많은 연구가 진행되고 있다. 본 연구에서는 상용 열교환기의 작동유체로서 많이 사용되고 있는 증류수, 에틸렌글리콜, 에틸알코올에 나노다이아몬드 분말을 적용한 나노유체의 열전도도를 측정하였다. 나노유체는 매트릭스 합성 분산법을 이용하여 제조하였으며, 나노다이아몬드의 혼합량은 0.1, 0.3, 0.5, 1vol%로 하였다. 측정결과 모든 기본유체 조건에서 나노유체의 열전도도가 증가하였으며, 특히 증류수에 분산된 1vol%의 나노유체에서 23%의 높은 열전도도 향상 경향을 보였다.

Keywords

References

  1. S.U.S. Choi, J. A Esterman, "Enhancing thermal conductivity of fluids with nanoparticles." Proceedings of International mechanical engineering congress and exposition, San Francisco, OSTI ID: 196525, 1995.
  2. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lu, G. Rosengarten, R. Prasher, and H. Tyagi, "Critical review of the novel applications and uses of nanofluids," Proceedings of the American Society of Mechanical Engineers MNHMT2012-75189, pp. 219-234, 2012.
  3. S. Lee, S. U. S Choi, S. Li, and J. A Esterman, "Measureing thermal conductivity of fluids containing oxide nanoparticles," Journal of Heat Transfer, vol. 121, pp. 280-289, 1999. https://doi.org/10.1115/1.2825978
  4. K. H. Park, J. A. Lee, and H. M Kim, "Heat conductivity test and conduction mechanism of nanofluid," Journal of the Korean Society of Marine Engineering, vol. 32, no. 6, pp. 862-868, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.6.862
  5. I. C. Bang and S. H. Chang, "Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from plain surface in a pool," Journal of Heat Mass Transfer, vol. 48, pp. 2470-2419, 2005.
  6. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, "The thermal conductivity of alumina nanofluids in water, ethylene glycole, and ethylene glycole + water mixtures," Journal of Nanoparticle Research, vol. 12, pp. 1469-1477, 2010. https://doi.org/10.1007/s11051-009-9716-9
  7. V. Sridhara, and L. N. Satapathy, "Al2O3-based nanofluids : a review," Journal of Nanoscale Research Letters, vol. 6, no. 456, pp. 1-16, 2011.
  8. S. U. S Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, "Anomalous thermal conductivity enhancement in nano-tube suspensions," Applied Physical Letters 79 pp. 2252-2254, 2001. https://doi.org/10.1063/1.1408272
  9. M. S. Liu, M. Ching-Cheng Lin, I. T. Huang, and C. C. Wang, "Enhancement of thermal conductivity with carbon nanotube for nanofluids," International Communications in Heat Transfer, vol. 32, no. 9, pp. 1202-1210, 2005. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005
  10. Y. Yang, E. A. Grulke, Z. G. Zhang, and G. Wu, "Thermal and rheological properties of carbon nanotube-in-oil dispersion," Journal of Applied Physics, vol. 99, p. 8, 2006.
  11. S. P. Jang and S. U. S. Choi, "Colling performance of a microchannel heat sink with nanofluids," Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2457-2463, 2006. https://doi.org/10.1016/j.applthermaleng.2006.02.036
  12. H. Shokouhmand, M. Ghazvini, and J. Shabanian, "Performance analysis of using nanofluids in microchannel heat sink in different flow regimes and its simulation using artificial neural network," Proceedings of the WCE'08, pp. 1841-1846, 2008.
  13. P. Naphon, P. Assadamongkol, and T. Borirak, "Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency," International Communications in Heat and Mass Transfer, vol. 35, no. 10, pp. 1316-1319, 2008. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.010
  14. Tim Richter, Advanced Hybrid Propulsion and Energy Management System for Mine Haul Trucks, Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation, Annual Report, Argonne National Laboratory, pp. 46, 2006.
  15. I. C. Nelson, D. Banerjee, and R. Ponnappan, "Flow loop experiments using polyalphaolefin nanofluids," Journal of Thermophysics and Heat Transfer, vol. 23, no. 4, pp. 752-761, 2009. https://doi.org/10.2514/1.31033
  16. J. Boungiorno, L. W. Hu, S. J. Kim, R. Hannink, B. Troung, and E. Forrest, "Nanofluids for enhanced economics and safety of nuclear reactors : an evaluation of the potential features issues, and research gaps," Nuclear Technology, vol. 162, no. 1, pp. 80-91, 2008.
  17. S. V. Kidalov and F. M. Shakhov, "Thermal conductivity of diamond composites," Journal of Materials, vol. 2, pp. 2467-2495, 2009. https://doi.org/10.3390/ma2042467
  18. S. Torii and W. J. Yang, "Heat transfer augmentation of aqueous suspensions of nanodiamonds in turbulent pipe flow," Journal of Heat Transfer, vol. 131, pp. 14-18, 2009.
  19. M. Yeganeh, N. Shahtahmasebi, A. Kompany, E. K. Goharshadi, A. Youssefi, and L. Siller, "Volume fraction and temperture cariations of the effective thermal conductivity of nanodiamond fluids in deionied water," International Journal of Heat and Mass Transfer, vol. 53, pp. 3186-3192, 2010. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.008
  20. W. Yu, H. Xie, Y. Li, L. Chen, and Q. Wang, "Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles," Colloids and Surfaces A: Physicochem Aspects 380, pp. 1-5, 2011. https://doi.org/10.1016/j.colsurfa.2010.11.020
  21. H. S. Carslaw and J. C. jaeger, Conduction of Heat on Solids, 2nd Ed, Oxford University Press, 1986.
  22. H. S. Carslaw, J. C. jaeger, 2nd Ed, Conduction of heat on solids, Oxford University Press, 1986.
  23. Frank P. Icropera, and David P. DeWitt, Introduction to Heat Transfer 5th Eds, John Wiley & Sons, pp. 852, 2002.