• Title/Summary/Keyword: Suspended solid (SS) removal

Search Result 60, Processing Time 0.026 seconds

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse (PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용)

  • Shin, Choon-Hwan;Kang, Dong-Hyo;Park, Hae-Sik;Cho, Hyun-Kil
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.

Study on Rapid Removal of Suspended Solid by Modified Magnetite Powder (마그네타이트 분말의 표면개질화에 의한 부유물질의 고속 제거)

  • 이혁희;박상원
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.1017-1023
    • /
    • 2003
  • The high speed elimination process of suspended solid was investigated to treat the pulp waste water by using surface modified magnetite particle and magnetic power. The effects of the various aluminum salts such as Al(NO$_3$)$_3$ㆍ9$H_2O$, AlC1$_3$ㆍ6$H_2O$, $Al_2$(SO$_4$)$_3$ㆍ13∼14 on the COD, BOD and suspended solid were systematically studied. It has been found that the 2.0 wt% of Al was most effective for the modification of Fe$_3$O$_4$ powder and then best for the treatment of pulp waste water, Optimum quantity of modified magnetite in this study was 12 wt%, and aging time was found to be 12 hours. Comparing with the conventional process, the required time for SS removal was drastically decreased. BOB and COD were also effectively removed when applied to the pulp wastewater.

A Study on the Removal of Grease and Oill in the Treatment Plant (하수처리장의 유지제거에 대한 연구)

  • 박재효
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1981
  • During 20 days from November 4 to 28, 1980, the quantities of grease and oil, BOD (biological oxygen demand), COD (chemical oxygen demand), SS (suspended solid) were measured at Grit Chamber, Primary Sedimentation Tank, Secondary Sedimentation Tank in Chung Gye Chun sewage treatment plant. The results were as follows. 1. The average of grease and oil quantities were 251mg/l at Grit Chamber, 185mg/l at Primary Sedimentation Tank, 47mg/l at Secondary Sedimentation Tank. 2. In the secondary treatment for the removal of grease and oil, the removed quantities of grease and oil were increased according to increasing the quantities of influent grease and oil. The regression equation were as follows G.O.removed=0.731 G.O. influent+3.235 (r=0.887) 3. The average of grease and oil removal rate was 76.4% and the standard deviation of grease and oil removal rate daily was 10.6%. 4. G.O. (grease and oil) and BOD, COD, SS showed significant correlationship at Grit Chamber, Primary Sedimentation Tank, Secondary Sedimentation Tank. (P<0.05). 5. In the secondary treatment, effluent grease & oil and other parameters were analyzed by means of Stepwise multiple regression. Multple regression equation for estimates of effluent grease and oil were as follows. $GO_E=-9.1637+2.0380 SS_E+0.068 SS_I$ (r=0.778) 6. The correlative parameters for the effluent grease and oil seem to be the influent SS and the effluent SS. 7. It was estimated that the removal of grease and oil would be improved by means of improvement of suspended solids removal efficiency but it is necessary to inquire further into the study.

  • PDF

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Survey on electrocoagulation to purify contaminated water (전기응고법을 이용한 오염 수 정화)

  • Kim, W.Y.;Park, K.S.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.17-20
    • /
    • 2014
  • A magnetic fluid separation technology was confirmed to be very effective to remove the suspended solids from contaminated water. We have surveyed on the effects of operating variables on the characteristics of suspended solids(SS) removal investigated through the test runs using magnetic powder. Magnetic flocculation here formed by adsorbing fine magnetites on the surface of suspended solid was observed. The strength of magnet was of significance in determining the SS removal efficiency.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Optimizing of Coagulation and Solid-Liquid Separation Conditions Using Aluminum Sulfate and Poly-Aluminum Chloride Coagulants from Brine Wastewater Discharged by the Epoxy-resin Process (에폭시수지 공정에서 발생되는 고염 폐수로부터 황산알루미늄과 PAC 응집제를 이용한 응집/고액분리 조건 최적화)

  • Lee, Chang-Han;Kim, Yu-Jin;Moon, Sung-Hyun;Kwon, Sung-Hun;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, solid-liquid separation conditions for coagulation and sedimentation experiments using inorganic coagulant (aluminum sulfate and Poly-Aluminum Chloride (PAC)) were optimized with brine wastewater discharged by the epoxy-resin process. When the turbidity and suspended solid (SS) concentration in raw wastewater were 74 NTU and 4.1 mg/L, respectively, their values decreased the lowest in a coagulant dosage of 135.0 - 270.0 mg Al3+/L. The epoxy resin was re-dispersed in the upper part of wastewater treated above 405.0 mg Al3+/L. The removal efficiencies of turbidity and SS via dosing with aluminum sulfate and PAC were evaluated at initial turbidity and SS of 74 - 630 NTU and 4.1 - 38.5 mg/L, respectively. They increased most in the range from 135.0 - 270.0 mg Al3+/L. The solid-liquid separation condition was quantitatively compared to the correlation of SS removal efficiency between the coagulant dosage and SS concentration based on the concentration of aluminum ions. The empirical formula, R = beaD, shows the relationship between SS removal efficiency (R) and coagulant dosage (D) at 38.5 mg/L; it produced high correlation coefficients (r2) of 0.9871 for aluminum sulfate and 0.9751 for PAC.

Evaluation of Downflow Granular Media Filtration for Stormwater Treatment (강우유출수에 의한 비점오염 저감을 위한 하향류식 입상여과 효율 평가)

  • Lim, Chan-Su;Kim, Do-Gun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.684-693
    • /
    • 2012
  • The stormwater runoff from the increasing paved roads and vehicles resulted in the increase in the pollutants load to adjacent water bodies. The granular media filtration facilities are the most widely adopted to minimize the non-point source pollution from motorways. It is essential to consider the severe variation of hydraulic condition, suspended solid (SS) characteristics, and the medium characteristics for stormwater management filter. In this study, different types of media, including sand, were tested and the performance of downflow sand filters was investigated under various linear velocity and influent solid particle size. Results showed that the best medium is the coarse sand with large grain size, which showed the specific SS removal before clogging of more than $8.498kg/m^2$, the SS removal of higher than 95%, and minimum head loss. Linear velocity did not affect the total solid removal, while the performance was improved when fine solid was introduced. It is suggested that the life of a downflow sand filter bed can be extended by deep bed filtration when influent particles are fine. However, the captured particles can be washed out after a long period of operation.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.