• Title/Summary/Keyword: Susceptibility weighted imaging

Search Result 52, Processing Time 0.024 seconds

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.

A Study on Dynamic Susceptibility-weighted Perfusion MR Imaging at High Magnetic Filed : Comparison of Gradient Echo-EPI and Spin Echo-EPI (고 자장에서 Dynamic Susceptibility Contrast 효과에 관한 연구 : Gradient EPI와 Spin-EPI기법의 비교)

  • Goo, Eun-Hoe;Chae, Hong-In;Park, Jong-Bae;Im, Cheong-Hwan;Kim, Jeong-Koo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • We have evaluated and compared of gradient echo and spin echo EPI for compensating about deeply distortion aspect in case of post-operation patients in magnetic resonance image. A total of 100 patients were performed on 3.0 T(GE Signa Excite E2, USA) with 8ch head coil. As a result of analysis, The SNRs of whiter and gray matter areas were 36.74 $\pm$ 06 and 39.96 $\pm$ 09 in the gradient echo EPI, the SNRs which white and gray matter areas were slightly higher than gradient echo EPI(P<0.005, paired student t-test). It was 46.24 $\pm$ 11 and 51.38 $\pm$ 13 in gradient and spin echo EPI, respectively. The signal intensity in the whiter and gray matter areas also were 87.33 $\pm$ 15.24 and 140.66 $\pm$ 13.45 in the gradient echo EPI techniques, The signal intensity of gradient echo EPI showed higher values compared to spin echo EPI. Otherwise, gradient echo EPI technique is distortion enough to operation wound and edge of the image, while spin echo EPI technique did not appear almost. In this point, the spin echo EPI technique, after surgical operation according to patient state beside gradient echo EPI techniques that signalbeside gradient echo EPI techniques that signal intensity is high and patient's case which image distortion is serious by metal etc, will be provide the useful information in adults and pediatric patients.

  • PDF

The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report (복부의 T2강조 영상에서 지방소거기법의최적의 평가)

  • Lee, Da-Hee;Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Clinical Utility of Prominent Hypointense Signals in the Draining Veins on Susceptibility-Weighted Imaging in Acute Cerebral Infarct: As a Marker of Penumbra and a Predictor of Prognosis (급성 뇌경색에서 자화율강조영상에서 보이는 현저한 유출정맥 저신호 강도의 임상적 유용성: Penumbra 및 예후 예측인자로서 가능성)

  • Lee, Hyun Sil;Ahn, Kook Jin;Choi, Hyun Seok;Jang, Jin Hee;Jung, So Lyung;Kim, Bum Soo;Yang, Dong Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2014
  • Purpose : A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. Materials and Methods: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. Results: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow- up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. Conclusion: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.

Acute High-Altitude Cerebral Edema Presenting as Extensive Microbleeds along the Corpus Callosum without T2 Hyperintensity: A Case Report and Literature Review (T2 고신호강도가 동반되지 않은 뇌량의 광범위한 미세출혈의 형태로 나타난 고산병: 증례 보고 및 문헌 고찰)

  • Jin Young Son;Jee Young Kim;Sanghyuk Im
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.4
    • /
    • pp.953-958
    • /
    • 2021
  • High-altitude cerebral edema (HACE) is a potentially fatal neurological syndrome that develops in persons traveling to a high altitude. We report the case of a 49-year-old male who had traveled to a high altitude, and lost consciousness for a few hours. Susceptibility-weighted images revealed multiple, fine black pepper like microbleeds along the corpus callosum with several microbleeds in the left frontal and parietal subcortical white matter. The T2-weighted images did not show any abnormal signal intensities along the corpus callosum. The diffusion-weighted images revealed small nodular high signal intensities in the basal ganglia. This report describes the atypical radiologic findings of HACE showing multiple microbleeds along the corpus callosum, without abnormal high-signal intensity on T2-weighted images.

Tumor-like Presentation of Tubercular Brain Abscess: Case Report

  • Karki, Dan B.;Gurung, Ghanashyam;Sharma, Mohan R.;Shrestha, Ram K.;Sayami, Gita;Sedain, Gopal;Shrestha, Amina;Ghimire, Ram K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.231-236
    • /
    • 2015
  • A 17-year-old girl presented with complaints of headache and decreasing vision of one month's duration, without any history of fever, weight loss, or any evidence of an immuno-compromised state. Her neurological examination was normal, except for papilledema. Laboratory investigations were within normal limits, except for a slightly increased Erythrocyte Sedimentation Rate (ESR). Non-contrast computerized tomography of her head revealed complex mass in left frontal lobe with a concentric, slightly hyperdense, thickened wall, and moderate perilesional edema with mass effect. Differential diagnoses considered in this case were pilocytic astrocytoma, metastasis and abscess. Magnetic resonance imaging (MRI) obtained in 3.0 Tesla (3.0T) scanner revealed a lobulated outline cystic mass in the left frontal lobe with two concentric layers of T2 hypointense wall, with T2 hyperintensity between the concentric ring. Moderate perilesional edema and mass effect were seen. Post gadolinium study showed a markedly enhancing irregular wall with some enhancing nodular solid component. No restricted diffusion was seen in this mass in diffusion weighted imaging (DWI). Magnetic resonance spectroscopy (MRS) showed increased lactate and lipid peaks in the central part of this mass, although some areas at the wall and perilesional T2 hyperintensity showed an increased choline peak without significant decrease in N-acetylaspartate (NAA) level. Arterial spin labelling (ASL) and dynamic susceptibility contrast (DSC) enhanced perfusion study showed decrease in relative cerebral blood volume at this region. These features in MRI were suggestive of brain abscess. The patient underwent craniotomy with excision of a grayish nodular lesion. Abundant acid fast bacilli (AFB) in acid fast staining, and epithelioid cell granulomas, caseation necrosis and Langhans giant cells in histopathology, were conclusive of tubercular abscess. Tubercular brain abscess is a rare manifestation that simulates malignancy and cause diagnostic dilemma. MRI along with MRS and magnetic resonance perfusion studies, are powerful tools to differentiate lesions in such equivocal cases.

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

The Study on Reduction of Image Distortion by using Single-Shot Turbo Spin Echo in Brain Stem Diffusion MRI (자기공명 확산강조영상검사 시 영상왜곡 감소에 관한 연구)

  • Choi, Kwan-Woo;Lee, Ho-Beom;Na, Sa-Ra;Yoo, Beong-Gyu;Son, Soon-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Single-shot echo planar imaging(SS-EPI) is well established as high sensitivity for ischemic stroke. However, it is prone to susceptibility artifact in brain stem that diminish the image quality. single-shot turbo spin echo(SS-TSE) is a new DWI technique that can reduce susceptibility artifact. Thus, this research was conducted so as to reduce geometric distortion in brain stem by using single-shot turbo spin echo technique. Thirty patients without brain disease underwent diffusion MR on a 3T scanner with SS-EPI and SS-TSE. Obtained images with both sequences were analyzed for geometric distortion and error percentage as well. Image quality in terms of geometric distortion of SS-TSE were found to be significantly better than those for SS-EPI. And error percentage was considerably reduced for 2.4% of b0 image(from 11.1% to 8.7%), 1.2% of b1000 image(from 11.4% to 10.1%), respectively. In summary, diffusion MR using SS-TSE significantly reduce geometric distortion compared to SS-EPI in brain stem and may provide improved diagnostic performance.