• Title/Summary/Keyword: Susceptibility Artifact

Search Result 33, Processing Time 0.026 seconds

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

The Study on Reduction of Image Distortion by using Single-Shot Turbo Spin Echo in Brain Stem Diffusion MRI (자기공명 확산강조영상검사 시 영상왜곡 감소에 관한 연구)

  • Choi, Kwan-Woo;Lee, Ho-Beom;Na, Sa-Ra;Yoo, Beong-Gyu;Son, Soon-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Single-shot echo planar imaging(SS-EPI) is well established as high sensitivity for ischemic stroke. However, it is prone to susceptibility artifact in brain stem that diminish the image quality. single-shot turbo spin echo(SS-TSE) is a new DWI technique that can reduce susceptibility artifact. Thus, this research was conducted so as to reduce geometric distortion in brain stem by using single-shot turbo spin echo technique. Thirty patients without brain disease underwent diffusion MR on a 3T scanner with SS-EPI and SS-TSE. Obtained images with both sequences were analyzed for geometric distortion and error percentage as well. Image quality in terms of geometric distortion of SS-TSE were found to be significantly better than those for SS-EPI. And error percentage was considerably reduced for 2.4% of b0 image(from 11.1% to 8.7%), 1.2% of b1000 image(from 11.4% to 10.1%), respectively. In summary, diffusion MR using SS-TSE significantly reduce geometric distortion compared to SS-EPI in brain stem and may provide improved diagnostic performance.

An Approach to the Theoretical Design Standard and Effective Practice of Museum Showcase Lighting (진열장 조명의 이론적 기준과 시설에 대한 고찰)

  • Kim, Hong-Bum
    • 보존과학연구
    • /
    • s.17
    • /
    • pp.123-160
    • /
    • 1996
  • There have been many studies and experiments regarding exhibition lighting. Many experiments on photochemical damaging effect and visibility resulted in a practice limited to assigning light levels and adjusting annual exposure time. The three damaging factors to the artifacts are intrinsicsusceptibility to absorb radiant energy, spectral distribution of light source and intensity of illumination and time of exposure. Dividing all the artfacts into three categories to suggest a recommended illuminance level causes some problems. Blue wool, for example, used as the reference material for susceptibility, is not a standard material representing museum artifacts. In the most light sensitive category, ISO class I or anything below have been excluded. The exposure time of one soure can be three times more than another sourece. The spectral distribution of the light source and the relative spectral responsibility of the artifact are not considered in the practice. So in case of very light sensitive material, the recommended illuminance is only the referring value and it is indispensable to check the characteristic of susceptibility of each artifacts. Daylighting is prevailing method to solve the psychological need of the visitors. However, it sould transparent, and should not diffused, and the green-house effect must be considered. llluminance uniformity should based on the maximum illuminance to handle the limitation of exposure for the conservation of a large sensitive object such as a painting. Damage index is not absolute reference for selecting the lighting source because it is experimented from the paper of low grade then calculated. Visibility should be increased by reducing the visual noiseand by planning of appropriate luminance contrast. This paper reviews the problems with the previous studies and experiment sand the current exhibition lighting design practice. The plan for museum showcase lighting is to check the susceptibility and to raise the visibility simultaneously.

  • PDF

The effects of labeling gap and susceptibility artifacts in pCASL perfusion MRI (pCASL 관류 영상에서 표지 간격과 자화감수성 인공물이 영상에 미치는 영향)

  • Kim, Seong-Hu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 2015
  • To report problems found in a patient who has implemented stent implantation and then conducted a perfusion MRI using ASL(Arterial Spin Labeling), in order to suggest a solution to them. The perfusion MRI was conducted, using pCASL among ASL methods. Data from pCASL(Pseudo Continuous Arterial Spin Labeling) was acquired together with the structural image simply by changing position(labeling gap 15 mm, 170 mm) of the labeling pulse to avoid stent. Data was processed through the ASLtbx. When perfusion MRI was acquired using pCASL, it showed that the position of the conventional labeling pulse (labeling gap 24 mm) was overlapped with that of stent, which made signal intensity in right brain tissue appear as if it were void. When the labeling pulse was positioned (labeling gap 15 mm) to avoid stent, high signal intensity images were acquired. In labeling pulse (labeling gap 170 mm), the signal intensity was more reduced due to relaxation before labeled blood arrived at the imaging slice. pCASL can be stably repeated measurements because it does not use a contrast agent. And it should be selected with the appropriate image acquisition parameters for the high quality image.

Assesment Of Image Quality in the Abdominal Magnetic Resonance Imaging: Comparison with 1.5 T and 3.0 T (복부 자기공명영상에서 영상의 질 평가: 1.5 T 와 3.0 T 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • This study conducted an analysis to compare the differences in the properties of the magnetic field and the generation of artifacts because of the difference in the magnetic field between 1.5 T equipment and 3.0 T equipment, centering around four types of pulse sequences, mainly applied to the abdominal Magnetic Resonance Imaging (MRI). With data on 500 persons transmitted to the PACS, this study analyzed the SNR value, quantitatively and carried out a qualitative evaluation, dividing MSA, CSA, and DA into three steps. As a result of the quantitative evaluation, the SNR value was significantly higher in the 1.5 T equipment; however, there was a factor deteriorating the image quality, too, as artifacts were generated in the images. The 1.5 T equipment generated fewer artifacts than the 3.0 T equipment did, so it could compensate the image quality for 3.0 T. In conclusion, based on these findings, this study could understand the differences in the properties of the magnetic field and the generation of artifacts occurring because of the difference in the magnetic field and could provide a measure for them. This study would be guidelines for MRI users who directly examine the patients in abdominal MRI using the two types of equipment in the clinical setting in the future.

Development of Real-time Heart Rate Measurement Device Using Wireless Pressure Sensor (무선 압력센서를 이용한 실시간 맥박수 측정기 개발)

  • Choi, Sang-Dong;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.284-288
    • /
    • 2016
  • Among the various physiological information that could be obtained from human body, heartbeat rate is a commonly used vital sign in the clinical milieu. Photoplethysography (PPG) sensor is incorporated into many wearable healthcare devices because of its advantages such as simplicity of hardware structure and low-cost. However, healthcare device employing PPG sensor has been issued in susceptibility of light and motion artifact. In this paper, to develop the real-time heart rate measurement device that is less sensitive to the external noises, we have fabricated an ultra-small wireless LC resonant pressure sensor by MEMS process. After performance evaluation in linearity and repeatability of the MEMS pressure sensor, heartbeat waveform and rate on radial artery were obtained by using resonant frequency-pressure conversion method. The measured data using the proposed heartbeat rate measurement system was validated by comparing it with the data of an commercialized heart rate measurement device. Result of the proposed device was agreed well to that of the commercialized device. The obtained real time heartbeat wave and rate were displayed on personal mobile system by bluetooth communication.

A Study of the Quantitative, Qualitative Analysis on Optimizing Diagnostic Imaging Device Selection in Nasopharynx MRI (비 인두 자기공명 검사 시 최적의 진단영상 장치 선택에 관한 정량, 정성적 평가에 관한 연구)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1035-1043
    • /
    • 2019
  • The object of is this research is to find out the optimal Tesla by evaluating SNR and CNR, after testing 1.5 T and 3.0 T. The randomly selected patients tested by nasopharynx MRI transmitted in PACS were applied to the research. Two MRI units(1.5 T, 3.0 T) was used for analyzing the data. As a method of analysis, in T1W highlighting and T1 fat removal images, we set up a certain area of interest and evaluated the SNR and CNR on tongue, spinal cord, masseter muscle, fat, parotid gland, and tumor tissue. We evaluated the SNR and CNR by quantitative analysis of six tissue, measuring the quality of images for uniform fat removal, magnetic sensitivity artifact on a four-point scale by qualitative analysis. The statistical significance of this date analysis was based on independent sample verification and was accepted when the P value was less than 0.05. As a result of analysis of both devices, 3.0 T was high in the quantitative evaluation, while 1.5 T was high in the qualitative evaluation. Considering the advantages and disadvantages of each device, and if the device is selected complementarily and applied to patients, it is believed that it will provide the optimal information.

A Study on MR Imaging Method for The Patient with Inserting Shoulder Joint Suture Anchor (견관절 삽입술을 시행한 환자의 자기 공명 영상법에 관한 연구)

  • Park, Eui-Cheol;Bae, Seok-Hwan;Ryu, Yeun-Chul;Park, Young-Joon;Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.513-519
    • /
    • 2021
  • Metallic suture anchors are very useful and common fixation devices that are inserted into the target bone to sustain the tendon of a patient with musculus supraspinatus tendon ruptures. On the other hand, the presence of a metallic material prosthesis, such as a metal suture anchor, causes severe MR imaging artifacts, including field distortion, signal loss, and failure of fat suppression. The difference in magnetic susceptibility between metal and other organic materials causes magnetic field distortion surrounding the prosthesis. The resulting magnetic field inhomogeneity makes the images with a lower signal-to-noise ratio and distortion. For a patient with a suture anchor implanted, MR imaging is the golden standard for determining the postoperative prognosis, and a fat-saturation sequence is one of the imaging methods most affected by metal-induced artifacts. In this study, three fat-saturation sequences were compared. Artifact quantification and contrast comparison between the supraspinatus tendon and the surrounding muscle were presented. The images obtained using the STIR pulse sequence showed fewer susceptibility artifacts and better visibility in the supraspinatus tendon and the tissue area. Therefore, the STIR sequence is the most appropriate fat-saturation imaging method for patients with a metallic prosthesis.

Determining the Location of Metallic Needle from MR Images Distorted by Susceptibility Difference (자화율 차이로 인해 왜곡된 영상으로부터 금속 바늘의 위치 결정)

  • Kim, Eun-Ju;Kim, Dae-Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Purpose : To calculate the appearance of the image distortion from metallic artifacts and to determine the location of a metallic needle from a distorted MR image. Materials and Methods : To examine metal artifacts, an infinite metal cylinder in a strong magnetic field are assumed. The cylinder’s axis leaned toward the magnetic field along some arbitrary angle. The Laplace equation for this situation was solved to investigate the magnetic field distortion, and the simulation was performed to evaluation the image artifact caused by both readout and slice-selection gradient field. Using the result of the calculation, the exact locations of the metal cylinder were calculated from acquired images. Results : The distances between the center and the folded point are measured from images and calculated. Percentage errors between the measured and calculated distance were less than 5%, except for one case. Conclusion : The simulation was successfully performed when the metal cylinder was skewed at an arbitrary tilted angle relative to the main magnetic field. This method will make it possible to monitor and guide both biopsy and surgery with real time MRI.