• Title/Summary/Keyword: SurveyingMap system

Search Result 293, Processing Time 0.025 seconds

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

A Study for Construction of Road and Underground Facilities Information Sharing Systems in Local Government (지자체단위의 도로기반시설물 정보공유체계 구축을 위한 연구)

  • 김명호;신동빈;안종욱;김감래
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.347-357
    • /
    • 2002
  • It is required that information sharing and integrated management between roads and underground facilities because there are so many possibilities to happen unexpected accidents. But if there are road excavation work happened, work agency should ask fer other facility information to the facility management company. In the case of local government, it is increasing that the needs for the development of roads and underground facilities management system and information sharing because digital map generation(1/1,000 scale) completed. In this study, as a way of integrated management and information sharing between roads and underground facilities, centralized system based on internet web technique and decentralized system based on closed network technique between the local government are considered. And for the development of information sharing system, action plan and considering points are proposed.

The Fracjection: An analytical system for projected fractures onto rock excavation surface from boreholes and outcrops (시추 및 야외조사 자료의 절취면 투영 분석 시스템 Fracjection)

  • Hwang, Sang-Gi;Lim, Yu-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1882-1889
    • /
    • 2007
  • Surveying rocks for engineering aims for prediction of geological feature of the construction site. Conventionally, survey information at outcrops and bore holes are projected to the construction sites, such as tunnel and slopes, and rock properties of the sites are predicted by interpretations of specialists. This system, the "Fracjection", aims to assist the specialist for visualization of the projected fractures from borehole and outcrop survey. The Fracjection accepts the BIPS and outcrop survey data to its database and allows plotting them in AutoCad map. The software also reads elevation data from contours of the topographic map and constructs DEM of the construction sites. With user's guide, it generates 3D excavation sites such as slopes and tunnels at the topographic map. The s/w projects borehole and outcrop surveyed fractures onto the modeled excavation surface and allows analysis of failure criteria, such as plane, wedge, and toppling failures by built-in stereonet function. Projected fractures can further be analyzed for structural homogeneities and rock mass quality. Moving window style correlation comparison of stereonet plots are used for formal analyses, and RQD type counts of the projected fractures are adopted for the latter analyses.

  • PDF

Comparison of Orthophotos and 3D Models Generated by UAV-Based Oblique Images Taken in Various Angles

  • Lee, Ki Rim;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.117-126
    • /
    • 2018
  • Due to intelligent transport systems, location-based applications, and augmented reality, demand for image maps and 3D (Three-Dimensional) maps is increasing. As a result, data acquisition using UAV (Unmanned Aerial Vehicles) has flourished in recent years. However, even though orthophoto map production and research using UAVs are flourishing, few studies on 3D modeling have been conducted. In this study, orthophoto and 3D modeling research was performed using various angle images acquired by a UAV. For orthophotos, accuracy was evaluated using a GPS (Global Positioning System) survey that employed VRS (Virtual Reference Station) acquired checkpoints. 3D modeling was evaluated by calculating the RMSE (Root Mean Square Error) of the difference between the outline height values of buildings obtained from the GPS survey to the corresponding 3D modeling height values. The orthophotos satisfied the acceptable accuracy of NGII (National Geographic Information Institute) for a 1/500 scale map from all angles. In the case of 3D modeling, models based on images taken at 45 degrees revealed better accuracy of building outlines than models based on images taken at 30, 60, or 75 degrees. To summarize, it was shown that for orthophotos, the accuracy for 1/500 maps was satisfied at all angles; for 3D modeling, images taken at 45 degrees produced the most accurate models.

Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon (도심지역에서의 연도별 다중위성항법 통합성능 예측)

  • Seok, Hyo Jeong;Park, Byung Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • In the paper, we predict the number of multi-GNSS satellites and visible satellites with the navigation satellite launch plans and their nominal orbit parameters. Based on the methodology, the multi-GNSS navigation performance and DOP (Dilution of Precision) variation from 2015 to 2020 were forecasted by the Matlab simulation. To calculate the position using the multi-GNSS constellation, we determined the time-offset between the two different systems. Two different algorithms were considered for the sake of time-offset determination; that of each was applied to system level and user side. Also, the results from two algorithms were compared for evaluating each performance. For the reality, we applied the 3D map information to the simulation, which is expected to contribute for predicting the future navigation performance in urban canyon.

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

A Study on the Unification Scheme of Surveying Policy and Geographic Information of South and North Korea (남북한 측량제도 및 지리정보 통합방안 연구)

  • Choi Yun-Soo;Park Hong-Gi;Lee Ho-Nam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2006
  • Geographic information and surveying products are a momentous national infrastructure since it is an essential basis for land management and environmental preservation. Hence, it is necessary to set up a systematic plan and countermeasure for the upcoming unification of Korea. Otherwise there would be tremendous confusion and it will cause enormous expenses to establish the national surveying and geographical information standard. In order to show the vision of policies preparing for the unification of North and South Korea, we analyzed the case of Germany and the current status of surveying and Geographical Information in South and North Korea by taking the internet investigation, having a seminar, interviewing experts, and visiting related organizations. First of all, we should predict the change of surveying circumstances after the reunification and establish a plan that unifies laws, systems, and surveying standards of North and South Korea. We need to modify the datum point and unify the surveying product of South and North Korea in World Geodetic System. To accomplish these goals, we must make the map of Korean peninsula and neighboring nations, especially urban area of North Korea. It is considered that National Geographic Information Institute should take a major role in the unification of Korea. With these active preparations and plans, we will achieve the goals of establishing the reinforced surveying policy and minimizing the reunification expenses.

A Study on the Digital Map Production and Water Supply management in GIS (GIS에 의한 수치지도 제작과 상수도 관리에 관한 연구)

  • 강준묵;윤희천;한승희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.59-67
    • /
    • 1993
  • Since society rapidly change, we need accurate and rapid information. Due to complication and rapid change of national infrastructure system, we meet a limitation of 2-D information management. Currently most digital cartographic data is acquired by manual digitizing with a tablet. Recently high cost scanner is widely used and preprocessing and postprocessing software of scanning are developed, so we expect its availability. In this study, we know that scanning is more convenient than digitizing with a tablet for digital mapping, also, possibility of 3-D modeling of vectorized document is suggested. Because information rapidly provided in the planning and implementation, operation efficiency and advance are archived in water supply project. Improvement of service for need of citizen and possibility combined information system connected with other system is presented.

  • PDF

Georeferencing of GPR image data using HD map construction method (정밀 도로 지도 구축 방법을 이용한 GPR 영상 데이터 지오레퍼런싱)

  • Shin, Jinsoo;Won, Jonghyun;Lee, Seeyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.507-513
    • /
    • 2021
  • GPR (Ground Penetrating RADAR) is a sensor that inspects the pavement state of roads, sinkholes, and underground pipes. It is widely used in road management. MMS (Mobile Mapping System) creates a detailed and accurate road map of the road surface and its surroundings. If both types of data are built in the same area, it is efficient to construct both ground and underground spatial information at the same time. In addition, since it is possible to grasp the road and important facilities around the road, the location of underground pipelines, etc. without special technology, an intuitive understanding of the site is also possible, which is a useful tool in managing the road or facilities. However, overseas equipment to which this latest technology is applied is expensive and does not fit the domestic situation. LiDAR (Light Detection And Raging) and GNSS/INS (Global Navigation Satellite System / Inertial Navigation System) were synchronized in order to replace overseas developed equipment and to secure original technology to develop domestic equipment in the future, and GPR data was also synchronized to the same GNSS/INS. We developed software that performs georeferencing using the location and attitude information from GNSS/INS at the time of acquiring synchronized GPR data. The experiments were conducted on the road site by dividing the open sky and the non-open sky. The road and surrounding facilities on the ground could be easily checked through the 3D point cloud data acquired through LiDAR. Georeferenced GPR data could also be viewed with a 3D viewer along with point cloud data, and the location of underground facilities could be easily and quickly confirmed through GPR data.

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.