• 제목/요약/키워드: Surround Luminance

검색결과 13건 처리시간 0.041초

Spatial Luminance Contrast Sensitivity: Effects of Surround

  • Kim, Youn-Jin;Kim, Hong-Suk
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.152-162
    • /
    • 2010
  • This study examined the effects of surround luminance on the shape of the spatial luminance contrast sensitivity function (CSF). The reduction in brightness of uniform neutral patches shown on a computer controlled display screen is also assessed to explain the change of CSF shape. Consequently, a large amount of reduction in contrast sensitivity at middle spatial frequencies can be observed; however, the reduction is relatively small for low spatial frequencies. In general, the effect of surround luminance on the CSF appears similar to that of mean luminance. Reduced CSF responses result in less power of the filtered image; therefore, the stimulus should appear dimmer with a higher surround luminance.

Perceived Image Contrast under a Wide Range of Surround Luminance

  • Baek, Ye-Seul;Kim, A-Ri;Kim, Youn-Jin;Kim, Hong-Suk;Park, Seung-Ok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1160-1163
    • /
    • 2009
  • Many researches showed that perceived image contrast increases as the relative surround luminance increases. However, most experiments were conducted under limited surround conditions. In this research, a psychophysical experiment was conducted to investigate the change in perceived image contrast under wide range of surround luminance up to 1820 cd/$m^2$. A large area illuminator was used as a backlight. It consists of 23 dimmable fluorescent lamps and a sheet of diffuser. The luminance could be adjusted to 7 different surround ratios: 0, 0.3, 0.56, 0.96, 2.24, 5.81, and 9.99. Results showed that perceived image contrast changes as a typical band-pass shape and the maximum contrast is found near $S_R$=1.

  • PDF

Determination of the Perceived Contrast Compensation Ratio for a Wide Range of Surround Luminance

  • Baek, Ye Seul;Kim, Hong-Suk;Park, Seung-Ok
    • Journal of the Optical Society of Korea
    • /
    • 제18권1호
    • /
    • pp.89-94
    • /
    • 2014
  • It is established that the perceived image contrast is affected by surround luminance. In order to get the same perceived image contrast, the optimum surround compensation ratios for those surround conditions is needed. Much research has been performed for dark, dim, and average surrounds. In this study, a wide range of surround luminance from dark up to $2087cd/m^2$ was considered. Using magnitude estimation method, the change in perceived brightness of six test stimuli was measured under seven surround conditions; dark, dim, 2 levels of average, bright, and 2 levels of over-bright surrounds. To drive the perceived image contrast from the perceived brightness, two different definitions of contrast were tested. Their calculated results were compared with the visual data of our previous work. And to conclude, the perceived contrast compensation ratios were 1:1.11:1.2 for average, dim and dark surrounds. These were close to CIECAM02 model (1:1.17:1.31). Besides, for average, bright, over-bright1 and over-bright2 surrounds the ratios 1:1.17:1.42:1.69 were determined. For intermediate or more extreme surround conditions, the compensation ratio was obtained from the linear interpolation or extrapolation.

Bright Surround Luminance and Perceived Image Contrast

  • Kim, A-Ri;Kim, Hong-Suk;Park, Seung-Ok;Baek, Ye-Seul;Kim, Youn-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.745-748
    • /
    • 2008
  • The theory of Bartleson and Breneman that the perceived image contrast changes with surround luminance (the lighter surround provides higher contrast) was tested an over bright condition($8500d/m^2$). Contrarily to the Bartleson and Breneman's results, we observed the fact that perceived constrast was decreased when surround huminance increased from dark to over bright through two sets of psychophysical experiments based upon both uniform gray patches and complex color images.

  • PDF

TV 시청 조건에서의 Brightness Function (Brightness Function on TV Viewing Condition)

  • 최성호;김희철;장수욱;김은수;한찬호;송규익
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2403-2406
    • /
    • 2003
  • When viewing images, the relative luminance of the surround has a profound impact on the apparent contrast of the image. The dark surround causes the image elements to appear lighter than those viewed in an illuminated surround. For this reason, it is worthwhile to briefly review the general results of brightness sealing under a various viewing condition. Two of the most often cited parers on the topic of brightness scaling are Stevens-stevens and Bartleson-Breneman's function. There are, however, significant differences between the perceptual functions for simple-field and complex-field viewing. In this paper, we research the relationship between Steven's power law and Bartleson-Breneman's function. We present an appropriate brightness perception function due to TV system viewing conditions. Highlight luminance peak and absolute brightness threshold value in various adaptation levels are obtained from the proposed brightness function . Also, the luminance value of black level to produce the same contrast ratio with variety of display highlight luminance peak is obtained from the proposed brightness function.

  • PDF

A Review of Mobile Display Image Quality

  • Kim, Youn Jin
    • 인포메이션 디스플레이
    • /
    • 제15권5호
    • /
    • pp.22-32
    • /
    • 2014
  • The current research intends to quantify the surround luminance effects on the shape of spatial luminance CSF and to propose an image quality evaluation method that is adaptive to both surround luminance and spatial frequency of a given stimulus. The proposed image quality method extends to a model called SQRI[8]. The non-linear behaviour of the HVS was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display MTF and CSF. It is assumed that image quality can be determined by considering the MTF of the imaging system and the CSF of human observers. The CSF term in the original SQRI model was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus. A few limitations of the current work should be addressed and revised in the future study. First, more accurate model predictions can be achievable when the actual display MTF is measured and used instead of the approximation. Then, a further improvement to the model prediction accuracy can be made when chromatic adaptation of the HVS is taken into account[45-46].

A Perceived Contrast Compensation Method Adaptive to Surround Luminance Variation for Mobile Phones

  • Yang, Cheng;Zhang, Jianqi;Zhao, Xiaoming
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.809-817
    • /
    • 2014
  • The loss in contrast-discrimination ability of the human visual system under high ambient illumination level can cause image quality degradation in mobile phones. In this paper, we propose a perceived contrast compensation method by processing the original displayed image. With consideration that the perceived contrast significantly varies across the image, this method extracts the local band contrast from the original image; it then compensates these contrast components to counteract the perceived contrast degradation. Experimental results demonstrate that this method can maintain most contrast details even in high ambient illumination levels.

주위 시환경의 색도 변화에 따른 색 순응 모델 (Chromatic Adaptation Model for the Variations of the Chromaticity tinder the Surround Viewing Conditions)

  • 김은수;장수욱;이성학;송규익
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.19-28
    • /
    • 2005
  • TV와 PC 모니터와 같은 컬러 디스플레이 장치 사용하는 실제 시환경은 표준 시환경과 상당히 다르다. 주위 시환경의 휘도와 색도의 변화에 따라 인간 시각계는 색 순응이 일어나게 되고, 사용자는 디스플레이 상에 재현된 측색적으로 동일한 색을 서로 다르게 느끼게 된다. 따라서 디스플레이에 재현된 색이 표준 시환경 하에서의 원래 색과 동일하게 재현하는 것이 중요하다. 본 논문에서는 동일한 휘도 조건에서 주위 조명광의 색도 변화에 따른 색 순응 모델을 제안한다. 제안한 색 순응 모델은 주위 시환경의 휘도 조건과 색도에 따라 시 세포의 L, M, 및 S 에 대한 감도의 이득을 모두 비선형 함수로 구한다. 그리고 제안한 색 순응 모델의 최적 이득 계수 값은 Breneman 색 순응 실험의 대응색 데이터들로부터 구한다. 제안한 색 순응 모델과 기존 모델들의 성능을 평가해 본 결과, 제안 방식의 색 순응 모델이 기존의 모델에 비해서 전 휘도 조건에서 매우 우수한 성능을 가짐을 확인하였다. 또한, 실제 시환경하에서 제안한 색 순응 모델을 이용하여 재현한 대응색이 표준 시환경 하에서의 원래의 색과 동일하게 보이는 것을 확인하였다.

Image Contrast Enhancement For Displaying Without Fading Under Environment Light

  • Monobe, Yusuke;Yamashita, Haruo;Kurosawa, Toshiharu;Kotera, Hiroaki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.239-242
    • /
    • 2004
  • This paper presents a novel contrast enhance algorithm for images displayed with bright environment light. This algorithm is designed to preserve local contrast based on the luminance ratio of the pixel to its local surround in attention. This algorithm improves image quality of projectors in a bright room.

  • PDF

HDC를 이용한 고속 MSRCR 알고리즘 (A Fast MSRCR Algorithm Using Hierarchical Discrete Correlation)

  • 한규필
    • 한국멀티미디어학회논문지
    • /
    • 제13권11호
    • /
    • pp.1621-1629
    • /
    • 2010
  • 본 논문에서는 칼라비전의 색사상에서 가장 많이 활용되는 MSR(multi-scale Retinex) 기법의 속도를 크게 개선한 MSRCR(MSR with color restoration) 알고리즘을 제시한다. 기존 MSR기법은 보통 3개의 SSR(single-scale Retinex)로 구성되며 각 SSR에 크기가 다른 Gaussian 주변함수를 사용하고 있으며, 이 함수와의 상승적분 부분에서 많은 계산이 요구된다. 그러므로 제안한 알고리즘은 속도를 높이기 위해 Gaussian 함수와 등가적인 HDC(hierarchical discrete correlation)를 사용하고 휘도영상에만 적용하는 기법을 제시하며, 휘도영상의 Retinex 결과 값을 이용하여 색이 보존되는 단순한 MSRCR 알고리즘을 개발하였다. 실험을 통하여 제안한 기법은 기존의 가장 단순한 MSR기법보다 연산량 및 속도를 1/9.5배, 1/3.5배로 줄일 수 있었으며 기존 기법과 동등한 결과를 얻을 수 있었다.