• Title/Summary/Keyword: Surgical Microscope

Search Result 97, Processing Time 0.02 seconds

Cleft Lip and Palate Repair Using a Surgical Microscope

  • Kato, Motoi;Watanabe, Azusa;Watanabe, Shoji;Utsunomiya, Hiroki;Yokoyama, Takayuki;Ogishima, Shinya
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.490-495
    • /
    • 2017
  • Background Cleft lip and palate repair requires a deep and small surgical field and is usually performed by surgeons wearing surgical loupes. Surgeons with loupes can obtain a wider surgical view, although headlights are required for the deepest procedures. Surgical microscopes offer comfort and a clear and magnification-adjustable surgical site that can be shared with the whole team, including observers, and easily recorded to further the education of junior surgeons. Magnification adjustments are convenient for precise procedures such as muscle dissection of the soft palate. Methods We performed a comparative investigation of 18 cleft operations that utilized either surgical loupes or microscopy. Paper-based questionnaires were completed by staff nurses to evaluate what went well and what could be improved in each procedure. The operating time, complication rate, and scores of the questionnaire responses were statistically analyzed. Results The operating time when microscopy was used was not significantly longer than when surgical loupes were utilized. The surgical field was clearly shared with surgical assistants, nurses, anesthesiologists, and students via microscope-linked monitors. Passing surgical equipment was easier when sharing the surgical view, and preoperative microscope preparation did not interfere with the duties of the staff nurses. Conclusions Surgical microscopy was demonstrated to be useful during cleft operations.

Essential of Endodontic microsurgery with the use of a Surgical Operating Microscope (외과적 근관치료의 핵심 - 치근단 미세누출 폐쇄술)

  • Kim, Sunil
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.556-564
    • /
    • 2017
  • Endodontic surgery is a procedure to treat apical periodontitis or abscess in cases that did not heal after nonsurgical treatment or retreatment. This might include situations with persistent intracanal infection after root canal treatment. Other reasons might be found in extraradicular infection, such as bacterial biofilm on the apical root surface or bacteria within the lesion. For many years, the treatment standard was the traditional approach with surgical burs and amalgam for root-end filling. Endodontic microsurgery is the most recent step in the evolution of endodontic surgery, applying not only ultrasonic tip and biocompatible filling materials but also incorporating high-power magnification and illumination. Although many studies have been published that advocate the use of modern technique, the traditional techniques are still widely used in the surgery community. The purpose of this study was to demonstrate the endodontic microsurgery procedure including the root-end preparation and filling with the use of a surgical operating microscope.

  • PDF

The application of "bone window technique" using piezoelectric saws and a CAD/CAM-guided surgical stent in endodontic microsurgery on a mandibular molar case

  • Kim, Ukseong;Kim, Sunil;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2020
  • Apical surgery for a mandibular molar is still challenging for many reasons. This report describes the applications of computer-guided cortical 'bone-window technique' using piezoelectric saws that prevented any nerve damage in performing endodontic microsurgery of a mandibular molar. A 49-year-old woman presented with gumboil on tooth #36 (previously endodontically treated tooth) and was diagnosed with chronic apical abscess. Periapical lesions were confirmed using cone-beam computed tomography (CBCT). Endodontic microsurgery for the mesial and distal roots of tooth #36 was planned. Following the transfer of data of the CBCT images and the scanned cast to an implant surgical planning program, data from both devices were merged. A surgical stent was designed, on the superimposed three-dimensional model, to guide the preparation of a cortical window on the buccal side of tooth #36. Endodontic microsurgery was performed with a printed surgical template. Minimal osteotomy was required and preservation of the buccal cortical plate rendered this endodontic surgery less traumatic. No postoperative complications such as mental nerve damage were reported. Window technique guided by a computer-aided design/computer-aided manufacture based surgical template can be considerably useful in endodontic microsurgery in complicated cases.

A comparison of using a smartphone versus a surgical microscope for microsurgical anastomosis in a non-living model

  • Jianmongkol, Surut;Vinitpairot, Chaiyos;Thitiworakarn, Navapong;Wattanakamolchai, Settapon
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.121-126
    • /
    • 2022
  • Background Although they may not replace standard training methods that use surgical microscopes, smartphones equipped with high-resolution screens and high-definition cameras are an attractive alternative for practicing microsurgical skills. They are ubiquitous, simple to operate, and inexpensive. This study compared anastomoses of chicken femoral vessels using a smartphone camera versus a standard operative microscope. Methods Forty anastomoses of non-living chicken femoral vessels were divided into four groups. A resident and an experienced microsurgeon performed anastomoses of femoral chicken vessels with 8-0 and 10-0 sutures, using a smartphone camera and a surgical microscope. The time to complete the anastomosis and the number of anastomosis errors were compared using the Mann-Whitney U test. Results The time taken to perform an anastomosis by the experienced microsurgeon was significantly longer when using the smartphone (median: 32.5 minutes vs. 20 minutes, P<0.001). The resident completed the anastomoses with both types of equipment without a significant difference in the operative times. When using a smartphone, the operation times were not significantly different between the resident and the experienced microsurgeon (P=0.238). The resident showed non-significant differences in operation time and the number of errors when using a smartphone or an operative microscope (P=1.000 and P=0.065, respectively). Conclusions Microsurgical practice with non-living chicken femoral vessels can be performed with a smartphone, though it can take longer than with an operative microscope for experienced microsurgeons. The resident may also experience frustration and tend to make more anastomosis errors when using a smartphone versus an operative microscope.

Diagnosing Micro Foreign Bodies with the Microscope

  • Kwon, Chan;Rhee, Seung Chul;Bahk, Su Jin;Cho, Sang Hun;Eo, Su Rak
    • Archives of Reconstructive Microsurgery
    • /
    • v.23 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • The microscope is a surgical instrument with wide use in plastic surgeries more often than other departments due to the high rate of microscopic surgeries. Unfortunately, because the microscope is used mainly for digital replantations and free flaps, the utilization rate is low compared to the price and usability of the microscope itself. From September 2013 to March 2014, a foreign body which was untraceable with radiology in a patient who desired surgical exploration (one case), and a foreign body which was detected but was smaller than 3 mm (two cases) were removed using the microscope. All foreign bodies, which were fish bone, thin metals, or wooden objects, matching the history of the patients, were completely removed without damage. There were no complications and patient satisfaction was high through follow-up. We have described the microscope as the last and optimal examination tool in removal of micro foreign bodies. A simple change of thought, so that the microscope can be used as a second diagnostic tool will decrease complications by foreign bodies.

Three-Dimensional Video Microscopy: Potential for Improved Ergonomics without Increased Operative Time?

  • Yasmina Samaha;Edward Ray
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.125-129
    • /
    • 2023
  • Three-dimensional (3D) video exoscopes are high-magnification stereo cameras that project onto monitors mounted in the operating room, viewable from different angles. Outside of plastic surgery, exoscopes have been shown to successfully improve the ergonomics of microsurgery, though sometimes with prolonged operating times. We compare a single surgeon's early experience performing free flap procedures from 2020 to 2021 using either a binocular microscope or a 3D video exoscope. Ten procedures were performed with the standard operating microscope and 8 procedures with the 3D exoscope. The microsurgeon, having minimal prior experience using an exoscope, reported less neck discomfort following the free flap procedures performed with the exoscope compared with the binocular surgical microscope. Total average operating time was comparable between the standard surgical microscope and the 3D exoscope (13.7 vs. 13.4 hours, p = 0.34). Our early experience using a 3D exoscope in place of a standard optical microscope demonstrated that the exoscope shows promise, offering an ergonomic alternative during microvascular reconstruction without increasing overall operating times. Future studies will compare free flap ischemia time between cases performed using the exoscope and the conventional binocular microscope. Medical Subject Headings authorized following words: free tissue flaps; operating rooms; ergonomics; microsurgery.

Development of The Intraoperative Surgical Optical Coherence Tomography Probe (실시간 광단층 모니터링 안구 수술용 현미경 프로브 개발)

  • Kim, Kyung-Un;Lee, Chang-Ho;Jeong, Hyo-Sang;Han, Seung-Hoon;Kim, Hong-Kyun;Kim, Jee-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • Intraoperative surgical microscope is an essential surgical equipment. However, it has a restriction to classify the retina layers because of the contrast differences. To solve this problem, operators use surgical instrument such as an intraocular mirror. In this case, it has to amputate the patient's eye. In this study, we developed a probe the intraoperative surgical optical coherence tomography. We expect that the developed OCT probe can overcome the limit of OCT and be applied as a real-time surgical tool. In this paper, we demonstrate applicability of the probe through rabbit's experimentation.

Application of dental microscope in endodontic treatment procedure. (근관치료 영역에서 치과용 미세현미경의 활용)

  • Choi, Sung Baik
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.542-555
    • /
    • 2017
  • 1. Diagnosis Diagnosis of Crack, Direct pulp capping 2. Access opening Find the calcified canal orifice Removal of dentin shelf Obtaining the MB2 canal (MB2, MB3, DB2) 3. Perforation repair during endodontic treatment 4. Removal of the separated files 5. Open apex treatment 6. Void removal on CWT procedure 7. Re-endodontic treatment Removal of restorative material filled in pulp chamber Post removal Identification and removal of residual gutta-perch 8. Surgical endodontic treatment In each case will overview how to use a dental microscope.

  • PDF

Use of Stereoscopic Microscope for Practice of Microsurgical Skill (미세수술 술기 연습을 위한 실체 현미경의 사용)

  • Song, Jeong-Hoon;Jeong, Eui-Cheol;Kwon, Sung-Tack
    • Archives of Reconstructive Microsurgery
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 2009
  • Purpose: Microsurgery is an essential technique in plastic and reconstructive surgery. However, microsurgical suturing and handling of the instrument are difficult for beginners, and who requires a steep learning curve. Therefore, methods for improving the technical skill are needed. The authors describe the value of a small stereoscopic microscope as a training tool. Materials and Methods: A small stereoscopic microscope was used to help improve the microsurgical skill. Monofilament 10-0 Nylon and a surgical rubber globe were used as a suture material and education material, respectively Result: Stereoscopic view of the operation field was obtained and basic microsurgical suture was possible. Conclusion: The stereoscopic microscope is an effective training tool for beginners of microsurgery with benefits in cost and usefulness in small place.

  • PDF

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.