• Title/Summary/Keyword: Surge protection device

Search Result 73, Processing Time 0.022 seconds

Energy Coordination between Cascaded Voltage Limiting Type SPDs in Surge Currents due to Direct Lightning Flashes (종속 접속된 전압제한형 SPD의 직격뢰 서지전류에 대한 에너지협조)

  • Lee, Bok-Hee;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.68-75
    • /
    • 2014
  • Cascaded applications of surge protective devices(SPDs) are required in order to reduce the stress on the electrical and electronics equipment being protected, and the energy coordination between the cascaded SPDs is very important. This paper deals with the experimental results obtained from the installation conditions of full-scale SPDs. The energy coordination between the upstream Class I SPD and the downstream Class II SPD was measured using a $10/350{\mu}s$ impulse current due to direct lightning flashes. The distances between the cascaded SPDs were 3, 10, and 50m, and the maximum test current was 12.5kA. As a result, the energy sharing between cascaded SPDs was dependent on the voltage protection level of each SPD and the distance between two SPDs. An overview of how to select SPD ratings in applications of cascaded SPDs system was discussed based on the energy coordination between the two SPDs. The proposed test results for the energy coordination between two-stage cascaded SPDs can be used in effective applications of SPDs.

Simulation Method on the Protection Effects of Voltage-Limiting Type SPDs Associated with the Protective Distance (보호거리에 따른 전압제한형 SPD의 보호효과에 대한 시뮬레이션기법)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents a method of simulating the protection effects of surge protective devices(SPDs) depending on the protective distance and types of input impedance of load to be protected. In order to analyze the protective performances of voltage-limiting type SPDs associated with the reflection and oscillation phenomena, the terminal voltage across load being protected and the residual voltage of SPDs were simulated by using EMTP model as functions of the protective distance and types of input impedance of loads. As a consequence, SPDs should be installed by taking into account the protective distance and input impedance of loads to achieve reliable protection of electrical and electronic equipment from lightning and switching surges. It is expected that the simulation method proposed in this paper could be practically used in design for installing SPDs in low-voltage distribution systems.

Review about the Lightning Protection System for Ground Facilities of Anti-aircraft Weapons System (뇌 보호시스템의 대공무기체계 지상시설 적용에 대한 고찰)

  • Jung, Kyoungwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.339-347
    • /
    • 2021
  • Recently, the incidence of lightning in Korea has been increasing more and more. The damage caused by lightning is also getting worse. Lightning protection system is a prerequisite, not a sufficient condition. Considering the characteristics of lightning, there is a high frequency of lightning strikes in highlands. So, high grades of LPS should be applied to ground facilities of anti-aircraft weapons systems. 4-Level LPS was applied on groung facilities of anti-aircraft weapons system based on lightning incidence rate in past. There are some possibilities of damage from lightning in anti-aircraft weapons system. So, we have to readjust the LPS level with grounding, lightning rods and surge protect device based on lightning incidence rate in now days. Propose 2-level LPS and design with lightning rods, surge protector, separated grounding in this paper.

Protection Characteristics of Two-Stage Cascade SPD Systems (2단 종속 SPD시스템의 보호특성)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

Research on Improvement of Power Control System of Cold & Hot Water Purifier (냉온정수기의 전원 제어 시스템 개선에 관한 연구)

  • Lee, Ki-Yeon;Choi, Chung-Seog;Kim, Dong-Ook;Kim, Hyang-Kon;Kim, Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • In this paper, this paper discusses how to improve the power control system of cold and hot water purifiers, in particular, system protecting device against abnormal voltage. The existing power supply control system came with a protecting device composed of varistor device only for impulse-type surges. Even though the existing system senses surge other than impulse-type, the system can not be protected. Accordingly, a new type of power control system was designed to protect the system from surge and ultimately prevent electricity accidents. The power control system suggested in this paper will be designed to protect the system by sensing input voltage and discontinuing power supply by means of SSR if voltage exceeding set value is sensed. To test the designed system, surge was imposed on the existing system and processes of system failure were experimented before safety of the designed power control system was simulated via P-spice program developed by Orcad in order to examine safety and reliability of the system.

A Study on the Development of a Transient Voltage Blocking Device for Info-communication Facilities (정보통신기기용 과도전압 차단장치의 개발에 관한 연구)

  • 한주순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.159-167
    • /
    • 1999
  • This paper presents a new transient voltage blocking device(TOBD)which low power and high frequency bandwidth to protect info-communication facilities from transient voltages. Conventional protection devices have some problems such as low frequency bandwidth low ener-gy capacity and high remnant voltage. in order to improve these limitations a hybrid type TOBD which consists of a gas tube avalanche diodes and junction type field effect transistor (JFETs) is developed. The TOBD differs from the conventional protection devices in configuration and JFETs are used as an active non-linear element and a high speed switching diode with low capacitance limited high current. Therefore the avalanche diode with low energy capacity are protected from the high current and the TOBD has a very small input capacitance. From the performance test using combination surge generator which can produce $1.2/50{\mu}m$ 4.2 kV/max, $8/20{\mu}m$ 2.1 kAmax it is confirmed that the proposed TOBD has an excellent protection per-formance in tight clamping voltage and limiting current characteristics.

  • PDF

Effective Protection Methods of Household Electric Appliances. from Lightning Surges (가정용 전기기구의 효과적인 뇌서지 보호기법)

  • 이복희;강성만;엄주홍;이수봉;길형준;구본완;안창환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.149-156
    • /
    • 2004
  • This paper deals with the effective protection method for the household electric appliances against lightning surges invading from the Power lines. Direct or induced lightning is the main cause of the breakdown of household electric appliance. The most effective protection method is to install SPDs(surge protective devices) at household electric appliances. If SPDs were not installed at most household electric appliances, it is necessary to install SPDs on the mains. Therefore the propagation aspect and protection methods of lighting surges coming into household electric appliances through the mains was experimentally investigated. The in actual-sized test circuits results of protection method for 8 household electric appliances including computer monitors and TV set could be summarized as follows: The breakdown characteristics of household electric appliances from lightning surges were significantly changed with the their input impedance. Namely, the types of input impedance are classified into infinite, resistive or inductive impedances. Especially, the monitor for computer with inductive input impedance from lightning surges was relatively weak against lightning surges. It was confirmed that the self inductance of branch circuits on the mains have protection effect for household electric appliances against lightning surges invading from the power lines. Also the varistors installed at cabinet panel or circuit-breaker were more effective than multi-tap outlet with varistors. When installed varistors in cabinet panel and multi-tap outlet together, the surge protection effect is much more excellent in technical and economical aspects.

A Study on the Protection Methods of Sheath Circulating Current Reduction Device in Transient State (과도상태에서의 시스순환전류 저감장치 보호방안에 관한 연구)

  • Kang, Ji-Won;Jung, Chae-Kyun;Lee, Jong-Beom;Lee, Dong-Il;Jung, Gil-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.53-58
    • /
    • 2002
  • Sheath circulating current is increased as the change of sheath mutual impedance which is caused by imbalance of cable system, and different section length between joint box. If excessive current flows in sheath. sheath loss will be increased and then transmission capacity of underground transmission system is reduced. Accordingly, This paper proposed sheath current reduction device using resistor and reactor and proved the reduction effect of that device using EMTP/ATP. And also in this paper, when transients are occurred at the underground system with reduction device by ground fault and lightning surge. we analyzes transient effect of system variously. From this result. authors establish the protection methods of sheath circulating current reduction device.

  • PDF

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes

  • Pharkphoumy, Sakhone;Khurelbaatar, Zagarzusem;Janardhanam, Valliedu;Choi, Chel-Jong;Shim, Kyu-Hwan;Daoheung, Daoheung;Bouangeun, Bouangeun;Choi, Sang-Sik;Cho, Deok-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.196-200
    • /
    • 2016
  • We have developed new electrostatic discharge (ESD) protection devices with, bidirectional flip chip transient voltage suppression. The devices differ in their epitaxial (epi) layers, which were grown by reduced pressure chemical vapor deposition (RPCVD). Their ESD properties were characterized using current-voltage (I-V), capacitance-voltage (C-V) measurement, and ESD analysis, including IEC61000-4-2, surge, and transmission line pulse (TLP) methods. Two BD-FCTVS diodes consisting of either a thick (12 μm) or thin (6 μm), n-Si epi layer showed the same reverse voltage of 8 V, very small reverse current level, and symmetric I-V and C-V curves. The damage found near the corner of the metal pads indicates that the size and shape of the radius governs their failure modes. The BD-FCTVS device made with a thin n- epi layer showed better performance than that made with a thick one in terms of enhancement of the features of ESD robustness, reliability, and protection capability. Therefore, this works confirms that the optimization of device parameters in conjunction with the doping concentration and thickness of epi layers be used to achieve high performance ESD properties.