• Title/Summary/Keyword: Surfactant treatment

Search Result 247, Processing Time 0.022 seconds

Deinking of Laser-printed Paper Using Ultrasound (초음파를 이용한 laser-printed paper의 탈묵)

  • 안병준;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.36-44
    • /
    • 1997
  • This experiment was mainly performed with a mechanical treatment using ultrasound. We got the following conclusions : At seven minutes-ultrasonic treatment using nonionic surfactant, yield, brightness and residual ink contents were superior to other treatment, but several strength properties were decreased. On the other hand anionic surfactant was considerably low ink removal efficiency. For ultrasonic treatment using nonionic surfactant, yield and brightness were dropped when temperature was over 4$0^{\circ}C$, but were observed to be insensitive to the pulp consistency and flotation time. In the case of nonionic surfactant, tensile and burst strength were improved when ultrasonic treatment was used comparing to non-treatment, and nonionic surfactant was generally better than anionic surfactant in terms of tensile and burst strength regardless of ultrasound conditions. Several properties were decreased when anionic surfactant was used in comparison with nonionic surfactant except yield, therefore, anionic surfactant. was not proper to be used in this condition.

  • PDF

Surfactant Replcement Therapy in Adult Respiratory Distress Syndrome (성인성 호흡곤란 증후군에 있어서 Surfactant 치료)

  • Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 1993
  • Pulmonary surfactant is a lipoprotein complex composed primarily of phospholipid and lung specific apoproteins that reduces surface tension in the alveolus and maintains alveolar stability at low lung volume. Adult respiratory distress syndrome still carries a very high morbidity and mortality. The surfactant system is vital to the maintenance of proper lung function, any type of surfactant deficiency, whether primary or secondary, will contribute significantly to the development of pulmonary pathophysiology. Various mechanisms in adult respiratory distress syndrome may be responsible for such alterations in the surfactant system. Surfactant replacement is now an established treatment for neonatal respiratory distress syndrome, reducing both incidence of complications and mortality. With the current knowledge of surfactant physiology and the pathophysiology of the adult respiratory distress syndrome exogenous surfactant treatment or stimulation of endogenous surfactant synthesis and secretion will prove to be beneficial in preventing and treating the adult respiratory distress syndrome. The study of clinical surfactant therapy for adult respiratory distress syndrome is just beginnig and this can be viewed as an area with exciting potential. As soon as surfactant preparations become more widely available trials should begin to define the role of surfactant treatment in the adult respiratory distress syndrome as an adjunct to available treatment techniques.

  • PDF

Enzymatic Processing and Property of Denim by Acid Cellulase (산성 셀룰라제 이용한 데님의 효소가공 및 물성)

  • Seo, Hye-Young;Song, Wha-Soon;Kim, Hye-Rim
    • Fashion & Textile Research Journal
    • /
    • v.11 no.3
    • /
    • pp.465-468
    • /
    • 2009
  • In this study, acid cellulase was used to treat denim fabrics by varying pH, temperature, enzyme concentration, treatment time and non-ionic surfactant (Triton X-100) concentration. Treatment condition was controlled based on the weight loss. The characteristics of enzyme-treated fabrics were measured in terms of tearing strength, stiffness, and color difference. The optimum conditions for cellulase treatment of denim fabric were pH 5.0, $50^{\circ}C$, 3% (o.w.f.), 90minutes. The weight loss did not change significantly with the addition of a non-ionic surfactant, but it improved when more non-ionic surfactant were used. The tearing strength of enzyme-treated denim fabrics did not deteriorate. The stiffness of the treated fabrics improved with the enzymatic treatment with and without the non-ionic surfactant. The difference in color of fabrics treated with enzyme increased.

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

Higher Extraction of Phytochemical Compounds from Tartary Buckwheat Seeds by the Application of Surfactant Formulation

  • Park, Cheol Ho;Azad, Md Obyedul Kalam;Heo, Jeong Won;Kang, Wie Soo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.686-692
    • /
    • 2017
  • The aim of this study was to determine the suitability of surfactant to extract higher phenolic compound, flavonoid and antioxidant activity from Tartary buckwheat and evaluate the potentiality of surfactant as a screening agent for breeding purpose. Primarily, we employed two types of surfactant (Hydrophilic: Tween 20 and Lipophilic: Span 80) to select the suitable surfactant agent for the extraction of optimum bioactive compounds. Between two surfactants, Tween 20 showed highest efficiency at 4 mM concentration to extract total phenolic content (TP), total flavonoid (TF) and antioxidant activity (AA). Tween 20 at 4 mM concentration was fixed for further analysis along with hot water ($90^{\circ}C$) treatment as a control. In our findings, highest TP (118 mg/g), TF (38 mg/g) and AA (76%) was achieved in KW21 and KW22 among the fifteen accessions of Tartary buckwheat. In other way, TP, TF and AA was 200%, 120% and 110% higher in surfactant formulation compared with control treatment, respectively.

Preparation of Fuel Cell Electrode Impregnated Platinum by Methanol Reduction Method -Effect of Surfactant and Heat Treatment at Pt Impregnation- (메탄올 환원법에 의한 연료전지용 백금담지 전극제조 -촉매담지시 계면활성제 첨가와 열처리 온도 효과-)

  • Jung, Eun-Ey;Yoo, Duck-Young;Eun, Yeong-Chan;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 1997
  • When platinum wan impregnated on carbon by methanol, surfactant have an important effect on the stability of platinum colloid. As the increase of amounts of surfactant enhanced the stability of platinum colloid, the particle size of platinum on carbon was diminished. But, after heat treatment, residue of surfactant remained in electrode to decrease current density of oxygen reduction. To remove surfactant, as temperature of heat treatment enhanced, platinum particle was aggromerated and current density was decreased.

  • PDF

A Field Study of Surfactant Enhanced In-Situ Remediation using Injection Wells and Recovery Trench at a Jet Oil Contaminated Site (항공유 오염 지역에서 주입정과 회수트렌치를 이용한 원위치 토양세정법 현장 적용)

  • Lee, Gyu-Sang;Kim, Yang-Bin;Jang, Jae-Sun;Um, Jae-Yeon;Song, Sung-Ho;Kim, Eul-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 2012
  • This study reports a surfactant-enhanced in-situ remediation treatment at a test site which is located in a hilly terrain. The leakage oils from a storage tank situated on the top of the hill contaminated soils and groundwater in the lower elevation. Sixteen vertical injection wells (11 m deep) were installed at the top of the hill to introduce 0.1-0.5 vol.% of non-ionic Tween-80 surfactant. The contaminated area that required remediation treatment was about $1,650\;m^2$. Two cycles of injecting surfactant solution followed by water were repeated over approximately 7.5 months: first cycle with 0.5 month of surfactant injection followed by 3 months of water injection, and second cycle with 1 month of surfactant followed by 3 months of water injection. The seasonal fluctuation in groundwater table was also considered in the selection of periods for surfactant and water injection. The results showed that the initial Total Petroleum Hydrocarbon (TPH) concentration of 1,041 mg/kg (maximum 3,605 mg/kg) was reduced significantly down to 76.6 mg/kg in average. After 2nd surfactant injection process finished, average TPH concentration of soils was reduced to 7.5% compared to initial concentration. Also, average BTEX concentration of soils was reduced to 10.8%. This resultes show that the surfactant enhanced in-situ remediation processes can be applicable to LNAPL contaminated site in field scale.

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF

Surface modification of silica aerogel by surfactant adsorption and heat treatment methods (계면활성제 흡착 및 열처리를 이용한 실리카 에어로겔의 표면 개질)

  • Kim, Nam-Yi;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.282-289
    • /
    • 2010
  • In preparation of silica aerogel-based hybrid coating materials, the combination of hydrophobic aerogel with organic polar binder material is shown to be very limited due to dissimilar surface property between two materials. Accordingly, the surface modification of the aerogel would be required to obtain compatibilized hybrid coating sols with homogeneous dispersion. In this study, the surface of silica aerogel particles was modified by using both surfactant adsorption and heat treatment methods. Four types of surfactants with different molecular weights and HLB values were used to examine the effect of chain length and hydrophilicity. The surface property of the modified aerogel was evaluated in terms of visible observation for aerogel dispersion in water, water contact angle measurement, and FT-IR analysis. In surface modification using surfactants, the effects of surfactant type and content, and mixing time as process parameter on the degree of hydrophilicity for the modified aerogel. In addition, the temperature condition in modification process via heat treatment was revealed to be significant factor to prepare aerogel with highly hydrophilic property.