• Title/Summary/Keyword: Surface-water irrigation

Search Result 213, Processing Time 0.027 seconds

Effect of Livestock Liquid Manure Released at a Rice Field on Quality of Soil and Water in the Saemangeum Watershed (가축분뇨 액비 살포가 새만금유역에서의 논토양과 수질에 미치는 영향)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • The Saemangeum watershed is required to manage water pollution effectively but the effect of liquid manure (LM) on soil and water quality in the basin is not clearly identified as yet. This study aims at assessing the effect on soil of a rice field and water quality of water bodies near the rice field during rice-crop time period to find out the effect of LM, the effect of rainfall, and the effect of rice-crop environment on soil and water quality by analyzing data of nitrogen components. As a result of the LM distribution, $NO_3-N$ was much higher than other N components in the entire soil layers and it was accelerated by rainfall right after the LM distribution. Compared to chemical fertilizer (CF), LM was slightly affected but still influenced on the surface water quality. During weak rainfall, low nitrogen concentration in topsoil was resulted as NH3-N decreased and Org-N and $NO_3-N$ increased. $NO_3-N$ concentration in the water of irrigation canals increased with time. During intensive rainfall, $NO_3-N$ and Org-N of the soil were measured highly in the submerged condition, while the water quality of the rice field was lower due to flooding into the irrigation canal as well as the growth of the rice plants. Also, total nitrogen was increased more than 7 times and it showed serious water quality deterioration due to LM and excessive fertilizer distribution, and rainfall during all rice-crop processes. The effect of LM on water quality should be studied consistently to provide critical data while considering weather condition, cropping conditions, soil characteristics, and so on.

The XPS and SEM Evaluation of Various Technique for Cleansing and Decontamination of The Rough Surface Titanium Implants (수종의 방법으로 임프란트 표면 처치후 표면의 형태 및 성분 변화 분석에 관한 연구)

  • Kim, Sun-bong;Yim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.749-763
    • /
    • 2001
  • Osseointegrated titanium implants have become an integral therapy for the replacement of teeth lost. For dental implant materials, titanium, hydroxyapatite and alumina oxide have been used, which of them, titanium implants are in wide use today. Titanium is known for its high corrosion resistance and biocompatability, because of the high stability of oxide layer mainly consists of $TiO_2$. With the development of peri-implantitis, the implant surface is changed in surface topography and element composition. None of the treatments for cleaning and detoxification of implant surface is efficient to remove surface contamination from contaminated titanium implants to such extent that the original surface elemental composition. In this sights, the purpose of this study was to evaluate rough surface titanium implants by means of scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) with respect to surface appearance and surface elemental composition. Moreover, it was also the aim to get the base for treatments of peri-implantitis. For the SEM and XPS study, rough surface titanium models were fabricated for control group. Six experimental groups were evaluated: 1) long-time room exposure, 2 ) air-powder abrasive cleaning for 1min, 3) burnishing in citric acid(pH1) for 1min, 4) burnishing in citric acid for 3min, 5) burnishing in tetracycline for 1min, 6) burnishing in tetracycline for 3min. All experimental treatments were followed by 1min of rinsing with distilled water. The results were as follows: 1. SEM observations of all experimental groups showed that any changes in surface topography were not detected when compared with control group. (750 X magnification) 2. XPS analysis showed that in all experimental groups, titanium and oxygen were increased and carbon was decreased, when compared with control group. 3. XPS analysis showed that the level of titanium, oxygen and carbon in the experimental group 3(citric acid treatment for 1min, followed by 1min of distilled water irrigation) reached to the level of control group. 4. XPS analysis showed that significant differences were not detected between the experimental group 1 and the other experimental groups except of experimental group 3. The Ti. level of experimental group 2, airpowder abrasive treatment for lmin followed by 1min of saline irrigation, was lower than the Ti. level of tetracycline treated groups, experimental group 5 and 6. From the result of this study, it may be concluded that the 1min of citric acid treatment followed by same time of rinsing with distilled water gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

  • PDF

Microbiological Quality and Antibiotic Susceptibility of E. coli Isolated from Agricultural Water in Gyeonggi and Gangwon Provinces (경기, 강원 지역 농업용수의 미생물학적 특성 및 농업용수 분리 대장균의 항생제 내성)

  • Hwang, Injun;Park, Daesoo;Chae, Hyobeen;Kim, Eunsun;Yoon, Jae-Hyun;Rajalingam, Nagendran;Choi, Songyi;Kim, Se-Ri
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • BACKGROUND: Irrigation water is known to be one of the major sources of bacterial contamination in agricultural products. In addition, anti-microbial resistance (AMR) bacteria in food products possess serious threat to humans. This study was aimed at investigating the prevalence of foodborne bacteria in irrigation water and evaluating their anti-microbial susceptibility. METHODS AND RESULTS: Surface water (n = 66 sites) and groundwater (n = 40 sites) samples were collected from the Gyeongi and Gangwon provinces of South Korea during April, July, and October 2019. To evaluate the safety of water, fecal indicators (Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were examined. E. coli isolates from water were further tested for antimicrobial susceptibility using VITEK2 system. Overall, detection rate of foodborne pathogens in July was highest among three months. The prevalence of pathogenic E. coli (24%), Salmonella (3%), and L. monocytogenes (3%) was higher in surface water, while only one ground water site was contained with pathogenic E. coli (2.5%). Of the 343 E. coli isolates, 22.7% isolates were resistant to one or more antimicrobials (ampicillin (18.7%), trimethoprim-sulfamethoxazole (7.0%), and ciprofloxacin (6.7%)). CONCLUSION: To enhance the safety of agricultural products, it is necessary to frequently monitor the microbial quality of water.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

The Evaluation of Pollutant Removal Efficiencies by Sedimentation Basin Types constructed at the Inlets of Irrigation Reservoirs (농업용 저수지 내 침강지의 설치유형에 따른 수질정화효율 평가)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Nam, Gui-Sook;Kwun, Soon-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.665-674
    • /
    • 2005
  • The aim of this study is to evaluate 3 types of sedimentation basins: dredging, shield skirt and auxiliary dam, constructed at inlets of two irrigation reservoir and to estimate the most beneficial type and fitted size, SAR(surface to area ratio), for pollutant removal efficiency(RE). For this, RE of major water quality items and change of physicochemical properties in sediments before and post construction of sedimentation basin(SB) were investigated. RE depended on SB types, water quality items and survey times with wide range from $-87\%$ to $92\%$. Long term overall removal efficiency by ROC(regression of concentration) method were $18\%$ in dredging, $29\%$ in shield skirt and $42\%$ in auxiliary dam type. There was a change of physicochemical properties in sediments at auxiliary dam type, while a slight change at dredging and shield skirt type. In comparison to RE, SAR and hydraulic retention time at 3 types of SB, auxiliary dam type was the most beneficial one. Thus, it is recommended that SB would be constructed in completely separated structure from water body of a reservoir with SAR ranged from 0.7 to $1.0\%.$

Geophysical and Geochemical Studies for the Saline Water Intrusion under the Paddy Field in Kyoung-gi area, Korea (경기 지역 농경지 하부로의 해수 침투에 관한 지구물리 및 지구화학적 연구)

  • Lee Sang-Ho;Kim Kyoung-Woong;Lee Sang-Kyu
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1999
  • Most of saline water inousions have been diagnosed by geophysical or geochemical approach independently. The objective of this study is to provide the effective method to detect the saline water intrusion on the ground water in the vicinity of seashore using these two methods. Schulumberger sounding, frequency domain electromagnetic sounding and geochemical analysis of ground water were carried out to explore saline water intrusion. Schulumberger sounding was implemented in dry surface condition before irrigation water was introduced into the field, while electromagnetic sounding was carried out in wet ground condition after the irrigation. The purpose of duplicated measurements on the equivalent spot at different times was to investigate the variation of anomaly zone depending on the amount of ground water. It was possible to discriminate the anomalous zone due to high water saturation from the low electric resistivity zone by high salt concentrations through this way. For the verification of the geophysical result, the ground water samples in the study area were collected and analysed at the 23 points near the measuring spots. The groundwater at the spot nearest to the sea water intrusion identified by geophysical method indicates higher salinity than the standard limit concentration for agricultural irrigation water (250 mg/1). Isotope analysis of $D({^2}H)$ vs. is ${^18}O$ and PCA analysis were used to discriminate the anthropogenic pollution from those of high salinity from sea water intrusion.

  • PDF

A Studies on Removal of Nutrient Material by Using Dropwort Field (미나리꽝을 이용한 영양물질제거에 관한 연구)

  • 이영신;김창회
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.16-20
    • /
    • 2003
  • Nitrogen(N) and phosphorus(P) in surface streams mainly lead to euthrophication. It aggravates water quality and consequently increases the purification costs. As a resolution of water contamination caused by household drainage through irrigation route by 70% of the 1,300 community residents in Eum-Am Myun, Seo-San city, was implemented biological self-purification method by growing Oenanthe Javanica along the polluted water tunnel. The contaminated water was efficiently purified after passing the dropwort field; DO conc. of effluent water was increased 8.3∼61.9% after through the drop wort field. HRT of experiment system was changed 0.05∼1.50/day. 50% of BOD was eliminated at the range above 12 mg/l of Influent BOD conc. Also, 50% of COD was eliminated at the range above 30 mg/l of Influent COD conc. Finnally, the influent T-N loading at range below 1.5 g/m$^3$/d reduced 50% of Influent T-N conc., and so did influent T-P loading at the range below 0.03 g/m$^3$/dwas reduced 50% of Influent T-P conc.

A Pesticide Residue Risk Assessment from Agricultural Land Using GIS

  • Lee, Ju-Young;Krishina, Ganeshy;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2008
  • Water quality contamination issues are of critical concern to human health, whilst pesticide release generated from irrigated land should be considered for protecting natural habitats and human health. This paper suggests new method for evaluation and analysis using the GIS technique based on integrated spatial modeling framework. The pesticide use on irrigated land is a subset of the larger spectrum of industrial chemicals used in modern society. The behavior of a pesticide is affected by the natural affinity of the chemical for one of four environmental compartments; solid matter, liquid, gaseous form, and biota. However, the major movements are a physical transport over the ground surface by rainfall-runoff and irrigation-runoff. The irrigated water carries out with the transporting sediments and makes contaminated water by pesticide. This paper focuses on risk impact identification and assessment using GIS technique. Also, generated data on pesticide residues on farmland and surface water through GIS simulation will be reflected to environmental research programs. Finally, this study indicates that GIS application is a beneficial tool for spatial pesticide impact analysis as well as environmental risk assessment.

Climate Change and Soil-Water Balance

  • Aydin, Mehmet;Yano, Tomohisa;Haraguchi, Tomokazu;Evrendilek, Fatih;Jung, Yeong-Sang
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.7-10
    • /
    • 2011
  • The semi-arid and arid regions comprise almost 40 percent of the world's land surface. The low and erratic precipitation pattern is the single most significant contributor for limiting crop production in such regions where rainfall is the source for surface, soil and ground water. In a changing climate, the semi-arid and arid regions would increasingly face the challenge of water scarcity. According to the relevant literature; under the assumption of a doubling of the current atmospheric CO2 concentration, irrigation demand was estimated to increase for wheat and to decrease for second crop maize in a Mediterranean environment of Turkey in the 2070s. Crop evapotranspiration would decrease due to stomata closure. Reference evapotranspiration and potential soil evaporation were projected to increase by 8.0 and 7.3%, respectively, whereas actual soil evaporation was predicted to decrease by 16.5%. Drainage losses below 90 cm soil depth were found to decrease mainly due to lesser rainfall amount in the future.

  • PDF