• Title/Summary/Keyword: Surface-to-Air Missile

Search Result 57, Processing Time 0.029 seconds

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

A Study on Optimal Allocation of Short Surface-to-Air Missile (단거리 지대공 미사일의 최적배치에 관한 연구)

  • 이영해;남상억
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.34-46
    • /
    • 2000
  • The object of this study is to construct a model for an optimal allocation of short surface to air missile defending our targets most efficiently from hostile aircraft´s attack. For the purpose of this, we analyze and establish facility allocation concept of existing models, apply set covering theory appropriate to problem´s properties, present the process of calculating the probability of target being protected, apply Sherali-Kim´s branching variable selection strategy, and then construct the model. As constructed model apply the reducing problem with application, we confirm that we can apply the large scale, real problem.

  • PDF

Study on the Removal of the Cable Braid Inside the Missile (유도탄 탄내케이블 브레이드 제거에 따른 고찰)

  • Eun, Hee-hyun;Kim, Ji-min;Lee, Min-hyoung;Jung, Jae-won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • The North Korea nuclear issue is now posing a serious security threat to the Korea and Northeast Asia. Accordingly, the South Korean military is pushing for the introduction of long-range air-to-surface flights and the development of domestic nuclear facilities that can precisely hit North Korea headquarters building and nuclear facility even hundreds of kilometers above the border. In this paper, we removed the cable braid for securing the weight of the missile among several design elements for long-range air-to-surface missile development and estimated and analyzed the resulting performance. The possibility of braid removal was analyzed in terms of crosstalk inside the cable and CS114, RE101 of MIL-STD-461F.

Mixed Control with Aerodynamic Fin and Side Thruster Applied to Air Defense Missile

  • Chanho Song;Kim, Yoon-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.4-148
    • /
    • 2001
  • This paper shows an autopilot design example with simulation results for a medium range surface-to-air missile used to intercept fast maneuver targets. The missile is assumed to use both aerodynamic fins and side thrusters to achieve fast time response. The steady-state maneuver capability of the missile is assumed to be enough at high altitude to engage usual maneuvering targets. Side thruster is used to get an extremely rapid acceleration response at high altitude where the missile´s aerodynamic control effectiveness is weak. The strategy of control design is firstly to employ side thrusters to achieve a rapid response and then to hand-over the control to the aerodynamic fins to maintain the desired acceleration command in the steady state ...

  • PDF

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense (복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로)

  • Kwak, Ki-Hoon;Lee, Jae-Yeong;Jung, Chi-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

Performance Comparison of 3-D Optimal Evasion against PN Guided Defense Missiles Using SQP and CEALM Optimization Methods (SQP와 CEALM 최적화 기법에 의한 대공 방어 유도탄에 대한 3차원 최적 회피 성능 비교)

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.272-281
    • /
    • 2009
  • In this paper, three-dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles were investigated. An interception error of the defense missile is produced by an evasive maneuver of the attack missile. It is assumed that the defense missiles are continuously launched during the flight of attack missile. The performance index to be minimized is then defined as the negative square integral of the interception errors. The direct parameter optimization technique based on SQP and a co-evolution method based on the augmented Lagrangian formulation are adopted to get the attack missile's optimal evasive maneuver patterns. The overall shape of the resultant optimal evasive maneuver is represented as a deformed barrel-roll.

500 lbs-class Air-to-Surface Missile Design by Integration of Aerodynamics and RCS (공력해석과 RCS해석 통합 500 lbs급 공대지 미사일 최적설계)

  • Bae, Hyo-Gil;Lee, Kwang-Ki;Jeong, Jun-O;Sang, Dae-Kyu;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.184-191
    • /
    • 2012
  • Aerodynamic analysis(DATCOM) and radar cross section(RCS) analysis(POFACETS) were integrated for the air-to-surface missile concept design using a design framework. The missile geometry was defined based on the CAD(CATIA) for synchronizing the manufacturing with design processes. Aero/RCS analyses were linked with the CAD process under the ModelCenter framework in order to receive the geometry data automatically. The missile design baseline configuration was selected from ROC(requirement of capability). Then the RCS minimization was performed subject to thelargerthebetter constraint of the missile lift-to-drag ratio. This study demonstrated that various design strategies can be performed efficiently about many missile configurations using this design framework in the missile conceptual design phase.

A Case Study on MIL-STD-1760E based Test Bench Implementation for Aircraft-Weapon Interface Testing (항공기-무장간의 연동 시험을 위한 MIL-STD-1760E 기반 테스트 벤치 구축 사례 연구)

  • Kim, Tae-bok;Park, Ki-seok;Kim, Ji-hoon;Jung, Jae-won;Kwon, Byung-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • In the case of aircraft-launched guided weapons, various interface tests such as MIL-STD-1760 based power source, discrete signal, MUX communication as well as BIT of missile can verify system safety and reliability. The purpose of this case study is to develop a test bench based on MIL-STD-1760E for interoperability testing between aircraft and weapons. We proposed a testing method of the launch sequence based on the defined TIME LINE in the development phase of the missile system from the application of the power of the missile to the targeting, the transfer order, and the missile separation process. Furthermore, it will be a reference model that can maximize the verification scope in the development phase of the air to surface missile system by simulating abnormal situation to the inert missile using the error insertion function.

The Design of Integrated Flying Vehicle Model for Engagement Analyses of Missiles

  • Ha, Sue Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.930-939
    • /
    • 2019
  • High-Level Architecture(HLA)/Run-Time Infrastructure(RTI) are standards for distributed simulation systems and offer a technology to interconnect them and form one single simulation system. In defense domain, M&S is the only way to prove effectiveness of weapon systems except for Live Fire Testing (LFT). This paper focuses on guided missile simulations in weapon systems for engagement analyses and proposes the integrated flying vehicle model that is based on HLA/RTI. There are a lot of missiles in real world; therefore, we should develop each missile models in M&S in order to apply battlefield scenarios. To deal with the difficulties, in this paper, firstly, I classify these missiles into three models: ballastic, cruise, and surface-to-air missile models, and then I design each missile model and integrates them into a single model. This paper also offers a case study with my integrated flying vehicle model. At the conclusion, this paper presents contributions of this paper.