• 제목/요약/키워드: Surface-modified activated carbon

검색결과 97건 처리시간 0.022초

저렴한 유리강화 활성탄소섬유를 이용한 건식 동시 탈황 탈질 시스템의 개발 (Preparation of the Inexpensive Fiberglass-Reinforced Activated Carbon Assemblies, and Development of Dry De-NOXSO System as Its Application)

  • 정애영;이시훈;김동표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.397-400
    • /
    • 1998
  • On the study, The activated carbon assemblies(ACA) were prepared by activation of the coated glass mat(woven type) with phenolic resin at $700^{\circ}C$ under $N_2$ after drying and curing processes. Surface of the ACA was continuously modified with $N_2$, $CO_2$ or $NH_3$ at $700^{\circ}C$ for 2 hour for comparison of adsorptive characteristics between the ACA and commercial activated carbon cloth. The ACA showed high surface areas up to $2440\;m^2$/g when converted into the coated carbon base, and the surface was investigated by FT-IR and XPS. The basic ACA modified with $NH_3$ displayed the efficient removal capability of $SO_2$, which is 75% of that in commercial activated carbon cloth. Therefore, it has proved the applicability of ACA as an inexpensive materials for Dry de-SOX system.

  • PDF

질산철을 이용하여 표면개질된 활성탄의 황화수소 흡착 (Adsorption of Hydrogen Sulfide on Surface Modified Activated Carbon using Ferric Nitrate)

  • 정문주;이성우;김대근
    • 한국대기환경학회지
    • /
    • 제31권2호
    • /
    • pp.173-180
    • /
    • 2015
  • The purpose of this study was to fabricate a ferric nitrate impregnated activated carbon, and the performance for hydrogen sulfide by adsorption was evaluated. Sodium hydroxide was utilized to control pH in the process during generation of ferric hydroxide on the surface of the carbon. Critical mixing duration for generation of ferric hydroxide on the carbon was 48 hrs at pH 1 of the solution, in which the chemical adsorption of hydrogen sulfide was enhanced. The adsorption capacity of the impregnated carbon increased up to 0.10 g hydrogen sulfide/g carbon, which was 4.3 times higher than that of the raw carbon. Presence of FeOOH on the surface of the impregnated carbon was examined by X-ray diffraction.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

Modified Activated Carbons from Olive Stones for the Removal of Heavy Metals

  • Youssef, A.M.;El-Nabarawy, Th.;El-Shafey, E.I.
    • Carbon letters
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2006
  • The activated carbon "C" was obtained by carbonization followed by activation with steam at 40% of burn-off. Oxidized carbons C-N, C-P and C-H were obtained by oxidizing the activated carbon C with concentrated nitric acid, ammonium peroxysulfate and hydrogen peroxide, respectively. The textural properties of the carbons were determined from nitrogen adsorption at 77 K. The acidic surface functional groups were determined by pH titration, base neutralization capacity and electrophoretic mobility measurements. The cation exchange capacities of un-oxidized and oxidized carbons were determined by the removal of Cu(II) and Ni(II) from their aqueous solutions. The surface area and the total pore volume decreased but the pore radius increased by the treatment of activated carbon with oxidizing agents. These changes were more pronounced in case of oxidation with $HNO_3$. The surface pH of un-oxidized carbon was basic whereas those of the oxidized derivative were acidic. The removal of Cu(II) and Ni(II) was pH dependent and the maximum removal of the both ions was obtained at pH of 5-6. Cu(II) was more adsorbed, a phenomenon which was ascribed to its particular electronic configuration.

  • PDF

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1321-1326
    • /
    • 2011
  • In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.

표면개질 된 활성탄의 메탄흡장 특성 (Characteristics of methane sorption in surface modified activated carbon)

  • 윤석민;김주완;조원준;김영호;이영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.73-76
    • /
    • 2007
  • In this study, methane gas adsorption ability of activated carbon (AC) with surface functional group effect, adsorbed methane amount was evaluated after nitric acid and ureatreatment of AC surface. Specific surface area and pore distribution of AC were studied though nitrogen adsorption isotherm at 77 K. Micro pore volume was calculated through H-K method. Adsorbed methane amount was evaluated through volume method at room temperature by using auto adsorption apparatus. Adsorbed methane amount of AC was found to increase with to specific surface area increase.Correlation proposed between the methane adsorption amount and surface nature indicates that the surface nature plays an important role on the adsorption amount at a given temperature.

  • PDF

활성탄의 표면처리에 의한 천연가스 흡장 (Natural Gas Sorption Using Activated-Carbon with Surface Treatment)

  • 윤석민;김주완;임지선;김신동;홍지숙;서정권;이영석
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.434-439
    • /
    • 2006
  • In this study, activated carbon(ACs) have been modified by nitric acid and heat-treatment. The surface and structure properties of ACs were determined by BET surface area, FT-IR pH and acid/base value. The changes in pore structure and surface properties of these modified ACs were correlated with natural gas adsorption which measured by volumetric apparatus at $0^{\circ}C$ and $25^{\circ}C$. The pore textural properties of activated carbon was also characterized by nitrogen adsorption at 77 K. Specific surface area and micropore volume of them were calculated by Langmuir equation and Horvath-Kawazoe method, and chemical properties of surface were measured by FT-IR and titration of acid and base solutions. Pore texture of activated carbons after treatments were not significantly changed. Total acidity increased and basicity of samples decreased. however the basicity increased with heat treatment. The methane adsorption of ACs become different depending on the acid/base value of samples.

활성탄소섬유를 이용한 추진제 저장수명 연장 (Propellant Shelf-life Extension by Surface-modified Activated Carbon Fiber)

  • 윤근식;이영석;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.443-448
    • /
    • 2011
  • 추진제는 저장 중 발생되는 질소산화물로 인해서 저장수명이 짧아진다. 추진제의 저장수명을 연장할 목적으로 활성탄소섬유로 추진제에서 발생하는 질소산화물을 흡착하였다. 활성탄소섬유에 폐추진제를 첨착시키고 열처리하여 표면을 개질한 결과 비표면적이 약간 감소하였으나 피리딘(pyridine), 피리돈(pyridone) 및 피롤(pyrrol) 등의 질소기능기가 생기는 것을 확인하였다. NO에 대한 흡착시험을 통해서 표면개질한 활성탄소섬유의 흡착능이 개질 이전의 활성탄소섬유에 비해 약 2배 증가하였다. 그리고 추진제에 대한 가속수명시험 결과 표면개질한 활성탄소섬유를 동봉하면 추진제의 저장수명이 약 25% 증가하였다.

Breakthrough behaviour of activated charcoal cloth samples against oxygen analogue of sulphur mustard

  • Prasad, G.K.;Kumar, J. Praveen;Ramacharyulu, P.V.R.K.;Singh, Beer
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.19-24
    • /
    • 2015
  • The breakthrough behaviour of activated charcoal cloth samples against an oxygen analogue (OA) of sulphur mustard has been studied using the modified Wheeler equation. Activated charcoal cloth samples having different surface area values in the range of 481 to $1290m^2/g$ were used for this purpose. Breakthrough behaviour was found to depend on the properties of the activated charcoal cloth, properties of the OA and the adsorption conditions. Activated charcoal cloth with a high surface area of $1290m^2/g$, relatively large surface density of $160g/m^2$ and coarser fiber structure exhibited better kinetic saturation capacity value, 0.19 g/g, against OA vapours when compared to others, thus confirming its potential use in foldable masks for protection against chemical warfare agents.

방사성 액체 폐기물 내 우라늄 흡착에 대한 활성탄의 표면 처리 영향 (Effect of Surface-Modification of Activated Carbon for Adsorption of Uranium in Radioactive Liquid Wastes)

  • 장재덕;이근우;송기찬;강호;오원진
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.827-835
    • /
    • 2000
  • $HNO_3$ 및 NaOH 용액으로 표면 처리한 활성탄을 이용하여 방사성 액체 폐기물 내에 잔존하는 우라늄의 흡착 특성을 조사하였다. $HNO_3$ 처리후 NaOH로 처리한 활성탄(Na-OAC)은 $HNO_3$만으로 처리한 활성탄(OAC)과 NaOH만으로 처리한 활성탄(Na-AC)에 비해 우수한 우라늄 흡착 성능을 나타내었다. 이와 같은 현상을 활성탄의 표면처리에 의한 표면 관능기 증가 및 용액의 pH 상승에 따른 효과로 설명할 수 있다. 따라서, $HNO_3$ 및 NaOH 용액을 이용하여 표면 처리한 활성탄을 이용한 우라늄 흡착 제거 공정에서는 용액 pH와 표면 처리에 의해 형성된 표면 관능기가 흡착 성능을 좌우하는 중요한 인자임을 알 수 있다.

  • PDF